1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
|
\documentclass{article}
\usepackage{axiom}
\title{\File{src/interp/i-resolv.boot} Pamphlet}
\author{The Axiom Team}
\begin{document}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\begin{verbatim}
new resolution: types and modes
a type is any term (structure) which can be regarded as a
functor call
a basic type is the call of a nullary functor (e.g. (Integer)),
otherwise it is a structured type (e.g. (Polynomial (Integer)))
a functor together with its non-type arguments is called a
type constructor
a mode is a type which can be partially specified, i.e. a term
containing term variables
a term variable (denoted by control-L) stands for any nullary or unary function
which was build from type constructors
this means, a term variable can be:
a function LAMBDA ().T, where T is a type
a function LAMBDA (X).T(X), where X is a variable for a type and
T a type containing this variable
a function LAMBDA X.X ("control-L can be disregarded")
examples:
P(control-L) can stand for (Polynomial (RationalFunction (Integer)))
G(control-L(I)) can stand for (Gaussian (Polynomial (Integer))), but also
for (Gaussian (Integer))
Resolution of Two Types
this symmetric resolution is done the following way:
1. if the same type constructor occurs in both terms, then the
type tower is built around this constructor (resolveTTEq)
2. the next step is to look for two constructors which have an
"algebraic relationship", this means, a rewrite rule is
applicable (e.g. UP(x,I) and MP([x,y],I))
this is done by resolveTTRed
3. if none of this is true, then a tower of types is built
e.g. resolve P I and G I to P G I
\end{verbatim}
\section{License}
<<license>>=
-- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
import '"i-object"
)package "BOOT"
resolveTypeList u ==
u is [a,:tail] =>
-- if the list consists entirely of variables then keep it explicit
allVars :=
a is ['Variable,v] => [v]
nil
while allVars for b in tail repeat
allVars :=
b is ['Variable,v] => insert(v, allVars)
nil
allVars =>
null rest allVars => ['Variable, first allVars]
['OrderedVariableList,nreverse allVars]
for md in tail repeat
a := resolveTT(md,a)
null a => return nil
a
throwKeyedMsg("S2IR0002",NIL)
-- resolveTT is in CLAMMED BOOT
resolveTypeListAny tl ==
rt := resolveTypeList tl
null rt => $Any
rt
resolveTTAny(t1,t2) ==
(t3 := resolveTT(t1, t2)) => t3
$Any
resolveTT1(t1,t2) ==
-- this is the main symmetric resolve
-- first it looks for equal constructors on both sides
-- then it tries to use a rewrite rule
-- and finally it builds up a tower
t1=t2 => t1
(t1 = '$NoValueMode) or (t2 = '$NoValueMode) => NIL
(t1 = $Void) or (t2 = $Void) => $Void
(t1 = $Any) or (t2 = $Any) => $Any
t1 = '(Exit) => t2
t2 = '(Exit) => t1
t1 is ['Union,:.] => resolveTTUnion(t1,t2)
t2 is ['Union,:.] => resolveTTUnion(t2,t1)
STRINGP(t1) =>
t2 = $String => t2
NIL
STRINGP(t2) =>
t1 = $String => t1
NIL
null acceptableTypesToResolve(t1,t2) => NIL
if compareTT(t1,t2) then
t := t1
t1 := t2
t2 := t
(t := resolveTTSpecial(t1,t2)) and isValidType t => t
(t := resolveTTSpecial(t2,t1)) and isValidType t => t
isSubTowerOf(t1,t2) and canCoerceFrom(t1,t2) => t2
isSubTowerOf(t2,t1) and canCoerceFrom(t2,t1) => t1
t := resolveTTRed(t1,t2) => t
t := resolveTTCC(t1,t2) => t
(t := resolveTTEq(t1,t2)) and isValidType t => t
[c1,:arg1] := deconstructT t1
arg1 and
[c2,:arg2] := deconstructT t2
arg2 and
t := resolveTT1(last arg1,last arg2)
t and ( resolveTT2(c1,c2,arg1,arg2,t) or
resolveTT2(c2,c1,arg2,arg1,t) )
acceptableTypesToResolve(t1,t2) ==
-- this is temporary. It ensures that two types that have coerces
-- that really should be converts don't automatically resolve.
-- when the coerces go away, so will this.
acceptableTypesToResolve1(t1,t2) and
acceptableTypesToResolve1(t2,t1)
acceptableTypesToResolve1(t1,t2) ==
t1 = $Integer =>
t2 = $String => NIL
true
t1 = $DoubleFloat or t1 = $Float =>
t2 = $String => NIL
t2 = '(RationalNumber) => NIL
t2 = [$QuotientField, $Integer] => NIL
true
true
resolveTT2(c1,c2,arg1,arg2,t) ==
-- builds a tower and tests for all the necessary coercions
t0 := constructM(c2,replaceLast(arg2,t))
canCoerceFrom(t,t0) and
t1 := constructM(c1,replaceLast(arg1,t0))
canCoerceFrom(t0,t1) and t1
resolveTTUnion(t1 is ['Union,:doms],t2) ==
unionDoms1 :=
doms and first doms is [":",:.] =>
tagged := true
[t for [.,.,t] in doms]
tagged := false
doms
member(t2,unionDoms1) => t1
tagged => NIL
t2 isnt ['Union,:doms2] =>
ud := nil
bad := nil
for d in doms while ^bad repeat
d = '"failed" => ud := [d,:ud]
null (d' := resolveTT(d,t2)) => bad := true
ud := [d',:ud]
bad => NIL
['Union,:REMDUP reverse ud]
ud := nil
bad := nil
for d in doms2 while ^bad repeat
d = '"failed" => ud := append(ud,[d])
null (d' := resolveTTUnion(t1,d)) => bad := true
ud := append(ud,CDR d')
bad => NIL
['Union,:REMDUP ud]
resolveTTSpecial(t1,t2) ==
-- tries to resolve things that would otherwise get mangled in the
-- rest of the resolve world. I'll leave it for Albi to fix those
-- things. (RSS 1/-86)
-- following is just an efficiency hack
(t1 = '(Symbol) or t1 is ['OrderedVariableList,.]) and PAIRP(t2) and
CAR(t2) in '(Polynomial RationalFunction) => t2
(t1 = '(Symbol)) and ofCategory(t2, '(IntegerNumberSystem)) =>
resolveTT1(['Polynomial, t2], t2)
t1 = '(AlgebraicNumber) and (t2 = $Float or t2 = $DoubleFloat) =>
['Expression, t2]
t1 = '(AlgebraicNumber) and (t2 = ['Complex, $Float] or t2 = ['Complex, $DoubleFloat]) =>
['Expression, CADR t2]
t1 = '(AlgebraicNumber) and t2 is ['Complex,.] =>
resolveTT1('(Expression (Integer)), t2)
t1 is ['SimpleAlgebraicExtension,F,Rep,poly] =>
t2 = Rep => t1
t2 is ['UnivariatePolynomial,x,R] and (t3 := resolveTT(t1, R)) =>
['UnivariatePolynomial,x,t3]
t2 is ['Variable,x] and (t3 := resolveTT(t1, F)) =>
['UnivariatePolynomial,x,t3]
t2 is ['Polynomial,R] and (R' := resolveTT(Rep, t2)) =>
R' = Rep => t1
['Polynomial,t1]
canCoerceFrom(t2,F) => t1
nil
t1 = $PositiveInteger and ofCategory(t2,'(Ring)) =>
resolveTT1($Integer,t2)
t1 = $NonNegativeInteger and ofCategory(t2,'(Ring)) =>
resolveTT1($Integer,t2)
t1 is ['OrderedVariableList,[x]] => resolveTTSpecial(['Variable, x], t2)
t1 is ['OrderedVariableList,vl] =>
ofCategory(t2,'(Ring)) => resolveTT(['Polynomial,'(Integer)],t2)
resolveTT($Symbol,t2)
t1 is ['Variable,x] =>
EQCAR(t2,'SimpleAlgebraicExtension) => resolveTTSpecial(t2,t1)
t2 is ['UnivariatePolynomial,y,S] =>
x = y => t2
resolveTT1(['UnivariatePolynomial,x,'(Integer)],t2)
t2 is ['Variable,y] =>
x = y => t1
-- ['OrderedVariableList, MSORT [x,y]]
$Symbol
t2 = '(Symbol) => t2
t2 is ['Polynomial,.] => t2
t2 is ['OrderedVariableList, vl] and member(x,vl) => t2
isPolynomialMode t2 => nil
ofCategory(t2, '(IntegerNumberSystem)) => resolveTT(['Polynomial, t2], t2)
resolveTT(['Polynomial,'(Integer)],t2)
t1 is ['FunctionCalled,f] and t2 is ['FunctionCalled,g] =>
null (mf := get(f,'mode,$e)) => NIL
null (mg := get(g,'mode,$e)) => NIL
mf ^= mg => NIL
mf
t1 is ['UnivariatePolynomial,x,S] =>
EQCAR(t2,'Variable) =>
resolveTTSpecial(t2,t1)
EQCAR(t2,'SimpleAlgebraicExtension) =>
resolveTTSpecial(t2,t1)
t2 is ['UnivariatePolynomial,y,T] =>
(x = y) and (U := resolveTT1(S,T)) and ['UnivariatePolynomial,x,U]
nil
t1 = '(Pi) =>
t2 is ['Complex,d] => defaultTargetFE t2
t2 is ['AlgebraicNumber] => defaultTargetFE t2
EQCAR(t2, 'Variable) or t2 = $Symbol =>
defaultTargetFE($Symbol)
t2 is ['Polynomial, .] or t2 is ['Fraction, ['Polynomial, .]] =>
defaultTargetFE(t2)
nil
t1 is ['Polynomial,['Complex,u1]] and t2 is ['Complex,u2] =>
resolveTT1(t1,u2)
t1 is ['Polynomial,R] and t2 is ['Complex,S] =>
containsPolynomial(S) => resolveTT1(['Polynomial,['Complex,R]],t2)
['Polynomial,['Complex,resolveTT1(R,S)]]
t1 is ['Expression, R] and t2 is ['Complex,S] =>
dom' := resolveTT(R, t2)
null dom' => nil
['Expression, dom']
t1 is ['Segment, dom] and t2 isnt ['Segment,.] =>
dom' := resolveTT(dom, t2)
null dom' => nil
['Segment, dom']
nil
resolveTTCC(t1,t2) ==
-- tries to use canCoerceFrom information to see if types can be
-- coerced to one another
gt21 := GGREATERP(t2,t1)
(c12 := canCoerceFrom(t1,t2)) and gt21 => t2
c21 := canCoerceFrom(t2,t1)
null (c12 or c21) => NIL
c12 and not c21 => t2
c21 and not c12 => t1
-- both are coerceable to each other
if gt21 then t1 else t2
resolveTTEq(t1,t2) ==
-- tries to find the constructor of t1 somewhere in t2 (or vice versa)
-- and move the other guy to the top
[c1,:arg1] := deconstructT t1
[c2,:arg2] := deconstructT t2
t := resolveTTEq1(c1,arg1,[c2,arg2]) => t
t := ( arg1 and resolveTTEq2(c2,arg2,[c1,arg1]) ) => t
arg2 and resolveTTEq2(c1,arg1,[c2,arg2])
resolveTTEq1(c1,arg1,TL is [c2,arg2,:.]) ==
-- takes care of basic types and of types with the same constructor
-- calls resolveTT1 on the arguments in the second case
null arg1 and null arg2 =>
canCoerceFrom(c1,c2) => constructTowerT(c2,CDDR TL)
canCoerceFrom(c2,c1) and constructTowerT(c1,CDDR TL)
c1=c2 and
[c2,arg2,:TL] := bubbleType TL
until null arg1 or null arg2 or not t repeat
t := resolveTT1(CAR arg1,CAR arg2) =>
arg := CONS(t,arg)
arg1 := CDR arg1
arg2 := CDR arg2
t and null arg1 and null arg2 and
t0 := constructM(c1,nreverse arg)
constructTowerT(t0,TL)
resolveTTEq2(c1,arg1,TL is [c,arg,:.]) ==
-- tries to resolveTTEq the type [c1,arg1] with the last argument
-- of the type represented by TL
[c2,:arg2] := deconstructT last arg
TL := [c2,arg2,:TL]
t := resolveTTEq1(c1,arg1,TL) => t
arg2 and resolveTTEq2(c1,arg1,TL)
resolveTTRed(t1,t2) ==
-- the same function as resolveTTEq, but instead of testing for
-- constructor equality, it looks whether a rewrite rule can be applied
t := resolveTTRed1(t1,t2,NIL) => t
[c1,:arg1] := deconstructT t1
t := arg1 and resolveTTRed2(t2,last arg1,[c1,arg1]) => t
[c2,:arg2] := deconstructT t2
arg2 and resolveTTRed2(t1,last arg2,[c2,arg2])
resolveTTRed1(t1,t2,TL) ==
-- tries to apply a reduction rule on (Resolve t1 t2)
-- then it creates a type using the result and TL
EQ(t,term1RW(t := ['Resolve,t1,t2],$Res)) and
EQ(t,term1RW(t := ['Resolve,t2,t1],$Res)) => NIL
[c2,:arg2] := deconstructT t2
[c2,arg2,:TL] := bubbleType [c2,arg2,:TL]
t2 := constructM(c2,arg2)
l := term1RWall(['Resolve,t1,t2],$Res)
for t0 in l until t repeat t := resolveTTRed3 t0
l and t => constructTowerT(t,TL)
l := term1RWall(['Resolve,t2,t1],$Res)
for t0 in l until t repeat t := resolveTTRed3 t0
l and t and constructTowerT(t,TL)
resolveTTRed2(t1,t2,TL) ==
-- tries to resolveTTRed t1 and t2 and build a type using TL
t := resolveTTRed1(t1,t2,TL) => t
[c2,:arg2] := deconstructT t2
arg2 and resolveTTRed2(t1,last arg2,[c2,arg2,:TL])
resolveTTRed3(t) ==
-- recursive resolveTTRed which handles all subterms of the form
-- (Resolve t1 t2) or subterms which have to be interpreted
atom t => t
t is ['Resolve,a,b] =>
( t1 := resolveTTRed3 a ) and ( t2 := resolveTTRed3 b ) and
resolveTT1(t1,t2)
t is ['Incl,a,b] => member(a,b) and b
t is ['SetDiff,a,b] => intersection(a,b) and SETDIFFERENCE(a,b)
t is ['SetComp,a,b] =>
and/[member(x,a) for x in b] and SETDIFFERENCE(a,b)
t is ['SetInter,a,b] => intersection(a,b)
t is ['SetUnion,a,b] => union(a,b)
t is ['VarEqual,a,b] => (a = b) and a
t is ['SetEqual,a,b] =>
(and/[member(x,a) for x in b] and "and"/[member(x,b) for x in a]) and a
[( atom x and x ) or ((not cs and x and not interpOp? x and x)
or resolveTTRed3 x) or return NIL
for x in t for cs in GETDATABASE(CAR t, 'COSIG) ]
interpOp?(op) ==
PAIRP(op) and
CAR(op) in '(Incl SetDiff SetComp SetInter SetUnion VarEqual SetEqual)
--% Resolve Type with Category
resolveTCat(t,c) ==
-- this function attempts to find a type tc of category c such that
-- t can be coerced to tc. NIL returned for failure.
-- Example: t = Integer, c = Field ==> tc = RationalNumber
-- first check whether t already belongs to c
ofCategory(t,c) => t
-- if t is built by a parametrized constructor and there is a
-- condition on the parameter that matches the category, try to
-- recurse. An example of this is (G I, Field) -> G RN
rest(t) and (tc := resolveTCat1(t,c)) => tc
-- now check some specific niladic categories
c in '((Field) (EuclideanDomain)) and ofCategory(t,'(IntegralDomain))=>
eqType [$QuotientField, t]
c = '(Field) and t = $Symbol => ['RationalFunction,$Integer]
c = '(Ring) and t is ['FactoredForm,t0] => ['FactoredRing,t0]
(t is [t0]) and (sd := getImmediateSuperDomain(t0)) and sd ^= t0 =>
resolveTCat(sd,c)
SIZE(td := deconstructT t) ^= 2=> NIL
SIZE(tc := deconstructT c) ^= 2 => NIL
ut := underDomainOf t
null isValidType(uc := last tc) => NIL
null canCoerceFrom(ut,uc) => NIL
nt := constructT(first td,[uc])
ofCategory(nt,c) => nt
NIL
resolveTCat1(t,c) ==
-- does the hard work of looking at conditions on under domains
-- if null (ut := getUnderModeOf(t)) then ut := last dt
null (conds := getConditionsForCategoryOnType(t,c)) => NIL
--rest(conds) => NIL -- will handle later
cond := first conds
cond isnt [.,["has", pat, c1],:.] => NIL
rest(c1) => NIL -- make it simple
argN := 0
t1 := nil
for ut in rest t for i in 1.. while (argN = 0) repeat
sharp := INTERNL('"#",STRINGIMAGE i)
sharp = pat =>
argN := i
t1 := ut
null t1 => NIL
null (t1' := resolveTCat(t1,c1)) => NIL
t' := copy t
t'.argN := t1'
t'
getConditionsForCategoryOnType(t,cat) ==
getConditionalCategoryOfType(t,[NIL],['ATTRIBUTE,cat])
getConditionalCategoryOfType(t,conditions,match) ==
if PAIRP t then t := first t
t in '(Union Mapping Record) => NIL
conCat := GETDATABASE(t,'CONSTRUCTORCATEGORY)
REMDUP CDR getConditionalCategoryOfType1(conCat,conditions,match,[NIL])
getConditionalCategoryOfType1(cat,conditions,match,seen) ==
cat is ['Join,:cs] or cat is ['CATEGORY,:cs] =>
null cs => conditions
getConditionalCategoryOfType1([first cat,:rest cs],
getConditionalCategoryOfType1(first cs,conditions,match,seen),
match,seen)
cat is ['IF,., cond,.] =>
matchUpToPatternVars(cond,match,NIL) =>
RPLACD(conditions,CONS(cat,CDR conditions))
conditions
conditions
cat is [catName,:.] and (GETDATABASE(catName,'CONSTRUCTORKIND) = 'category) =>
cat in CDR seen => conditions
RPLACD(seen,[cat,:CDR seen])
subCat := GETDATABASE(catName,'CONSTRUCTORCATEGORY)
-- substitute vars of cat into category
for v in rest cat for vv in $TriangleVariableList repeat
subCat := SUBST(v,vv,subCat)
getConditionalCategoryOfType1(subCat,conditions,match,seen)
conditions
matchUpToPatternVars(pat,form,patAlist) ==
-- tries to match pattern variables (of the # form) in pat
-- against expressions in form. If one is found, it is checked
-- against the patAlist to make sure we are using the same expression
-- each time.
EQUAL(pat,form) => true
isSharpVarWithNum(pat) =>
-- see is pattern variable is in alist
(p := assoc(pat,patAlist)) => EQUAL(form,CDR p)
patAlist := [[pat,:form],:patAlist]
true
PAIRP(pat) =>
not (PAIRP form) => NIL
matchUpToPatternVars(CAR pat, CAR form,patAlist) and
matchUpToPatternVars(CDR pat, CDR form,patAlist)
NIL
--% Resolve Type with Mode
-- only implemented for nullary control-L's (which stand for types)
resolveTMOrCroak(t,m) ==
resolveTM(t,m) or throwKeyedMsg("S2IR0004",[t,m])
resolveTM(t,m) ==
-- resolves a type with a mode which may be partially specified
startTimingProcess 'resolve
$Subst : local := NIL
$Coerce : local := 'T
t := eqType t
m := eqType SUBSTQ("**",$EmptyMode,m)
tt := resolveTM1(t,m)
result := tt and isValidType tt and eqType tt
stopTimingProcess 'resolve
result
resolveTM1(t,m) ==
-- general resolveTM, which looks for a term variable
-- otherwise it looks whether the type has the same top level
-- constructor as the mode, looks for a rewrite rule, or builds up
-- a tower
t=m => t
m is ['Union,:.] => resolveTMUnion(t,m)
m = '(Void) => m
m = '(Any) => m
m = '(Exit) => t
containsVars m =>
isPatternVar m =>
p := ASSQ(m,$Subst) =>
$Coerce =>
tt := resolveTT1(t,CDR p) => RPLACD(p,tt) and tt
NIL
t=CDR p and t
$Subst := CONS(CONS(m,t),$Subst)
t
atom(t) or atom(m) => NIL
(t is ['Record,:tr]) and (m is ['Record,:mr]) and
(tt := resolveTMRecord(tr,mr)) => tt
t is ['Record,:.] or m is ['Record,:.] => NIL
t is ['Variable, .] and m is ['Mapping, :.] => m
t is ['FunctionCalled, .] and m is ['Mapping, :.] => m
if isEqualOrSubDomain(t, $Integer) then
t := $Integer
tt := resolveTMEq(t,m) => tt
$Coerce and
tt := resolveTMRed(t,m) => tt
resolveTM2(t,m)
$Coerce and canCoerceFrom(t,m) and m
resolveTMRecord(tr,mr) ==
#tr ^= #mr => NIL
ok := true
tt := NIL
for ta in tr for ma in mr while ok repeat
-- element is [':,tag,mode]
CADR(ta) ^= CADR(ma) => ok := NIL -- match tags
ra := resolveTM1(CADDR ta, CADDR ma) -- resolve modes
null ra => ok := NIL
tt := CONS([CAR ta,CADR ta,ra],tt)
null ok => NIL
['Record,nreverse tt]
resolveTMUnion(t, m is ['Union,:ums]) ==
isTaggedUnion m => resolveTMTaggedUnion(t,m)
-- resolves t with a Union type
t isnt ['Union,:uts] =>
ums := REMDUP spliceTypeListForEmptyMode([t],ums)
ums' := nil
success := nil
for um in ums repeat
(um' := resolveTM1(t,um)) =>
success := true
um' in '(T TRUE) => ums' := [um,:ums']
ums' := [um',:ums']
ums' := [um,:ums']
-- remove any duplicate domains that might have been created
m' := ['Union,:REMDUP reverse ums']
success =>
null CONTAINED('_*_*,m') => m'
t = $Integer => NIL
resolveTM1($Integer,m')
NIL
-- t is actually a Union if we got here
ums := REMDUP spliceTypeListForEmptyMode(uts,ums)
bad := nil
doms := nil
for ut in uts while ^bad repeat
(m' := resolveTMUnion(ut,['Union,:ums])) =>
doms := append(CDR m',doms)
bad := true
bad => NIL
['Union,:REMDUP doms]
resolveTMTaggedUnion(t, m is ['Union,:ums]) ==
NIL
spliceTypeListForEmptyMode(tl,ml) ==
-- splice in tl for occurrence of ** in ml
null ml => nil
ml is [m,:ml'] =>
m = "**" => append(tl,spliceTypeListForEmptyMode(tl,ml'))
[m,:spliceTypeListForEmptyMode(tl,ml')]
resolveTM2(t,m) ==
-- resolves t with the last argument of m and builds up a tower
[cm,:argm] := deconstructT m
argm and
tt := resolveTM1(t,last argm)
tt and
ttt := constructM(cm,replaceLast(argm,tt))
ttt and canCoerceFrom(tt,ttt) and ttt
resolveTMEq(t,m) ==
-- tests whether t and m have the same top level constructor, which,
-- in the case of t, could be bubbled up
(res := resolveTMSpecial(t,m)) => res
[cm,:argm] := deconstructT m
c := containsVars cm
TL := NIL
until b or not t repeat
[ct,:argt] := deconstructT t
b :=
c =>
SL := resolveTMEq1(ct,cm)
not EQ(SL,'failed)
ct=cm
not b =>
TL := [ct,argt,:TL]
t := argt and last argt
b and
t := resolveTMEq2(cm,argm,[ct,argt,:TL])
if t then for p in SL repeat $Subst := augmentSub(CAR p,CDR p,$Subst)
t
resolveTMSpecial(t,m) ==
-- a few special cases
t = $AnonymousFunction and m is ['Mapping,:.] => m
t is ['Variable,x] and m is ['OrderedVariableList,le] =>
isPatternVar le => ['OrderedVariableList,[x]]
PAIRP(le) and member(x,le) => le
NIL
t is ['Fraction, ['Complex, t1]] and m is ['Complex, m1] =>
resolveTM1(['Complex, ['Fraction, t1]], m)
t is ['Fraction, ['Polynomial, ['Complex, t1]]] and m is ['Complex, m1] =>
resolveTM1(['Complex, ['Fraction, ['Polynomial, t1]]], m)
t is ['Mapping,:lt] and m is ['Mapping,:lm] =>
#lt ^= #lm => NIL
l := NIL
ok := true
for at in lt for am in lm while ok repeat
(ok := resolveTM1(at,am)) => l := [ok,:l]
ok and ['Mapping,:reverse l]
t is ['Segment,u] and m is ['UniversalSegment,.] =>
resolveTM1(['UniversalSegment, u], m)
NIL
resolveTMEq1(ct,cm) ==
-- ct and cm are type constructors
-- tests for a match from cm to ct
-- the result is a substitution or 'failed
not (CAR ct=CAR cm) => 'failed
SL := NIL
ct := CDR ct
cm := CDR cm
b := 'T
while ct and cm and b repeat
xt := CAR ct
ct := CDR ct
xm := CAR cm
cm := CDR cm
if not (atom xm) and CAR xm = ":" -- i.e. Record
and CAR xt = ":" and CADR xm = CADR xt then
xm := CADDR xm
xt := CADDR xt
b :=
xt=xm => 'T
isPatternVar(xm) and
p := ASSQ(xm,$Subst) => xt=CDR p
p := ASSQ(xm,SL) => xt=CDR p
SL := augmentSub(xm,xt,SL)
b => SL
'failed
resolveTMEq2(cm,argm,TL) ==
-- [cm,argm] is a deconstructed mode,
-- TL is a deconstructed type t
[ct,argt,:TL] :=
$Coerce => bubbleType TL
TL
null TL and
null argm => constructM(ct,argt)
-- null argm => NIL
arg := NIL
while argt and argm until not tt repeat
x1 := CAR argt
argt := CDR argt
x2 := CAR argm
argm := CDR argm
tt := resolveTM1(x1,x2) =>
arg := CONS(tt,arg)
null argt and null argm and tt and constructM(ct,nreverse arg)
resolveTMRed(t,m) ==
-- looks for an applicable rewrite rule at any level of t and tries
-- to bubble this constructor up to the top to t
TL := NIL
until b or not t repeat
[ct,:argt] := deconstructT t
b := not EQ(t,term1RW(['Resolve,t,m],$ResMode)) and
[c0,arg0,:TL0] := bubbleType [ct,argt,:TL]
null TL0 and
l := term1RWall(['Resolve,constructM(c0,arg0),m],$ResMode)
for t0 in l until t repeat t := resolveTMRed1 t0
l and t
b or
TL := [ct,argt,:TL]
t := argt and last argt
b and t
resolveTMRed1(t) ==
-- recursive resolveTMRed which handles all subterms of the form
-- (Resolve a b)
atom t => t
t is ['Resolve,a,b] =>
( a := resolveTMRed1 a ) and ( b := resolveTMRed1 b ) and
resolveTM1(a,b)
t is ['Incl,a,b] => PAIRP b and member(a,b) and b
t is ['Diff,a,b] => PAIRP a and member(b,a) and SETDIFFERENCE(a,[b])
t is ['SetIncl,a,b] => PAIRP b and "and"/[member(x,b) for x in a] and b
t is ['SetDiff,a,b] => PAIRP b and PAIRP b and
intersection(a,b) and SETDIFFERENCE(a,b)
t is ['VarEqual,a,b] => (a = b) and b
t is ['SetComp,a,b] => PAIRP a and PAIRP b and
"and"/[member(x,a) for x in b] and SETDIFFERENCE(a,b)
t is ['SimpleAlgebraicExtension,a,b,p] => -- this is a hack. RSS
['SimpleAlgebraicExtension, resolveTMRed1 a, resolveTMRed1 b,p]
[( atom x and x ) or resolveTMRed1 x or return NIL for x in t]
--% Type and Mode Representation
eqType(t) ==
-- looks for an equivalent but more simple type
-- eg, eqType QF I = RN
-- the new algebra orginization no longer uses these sorts of types
-- termRW(t,$TypeEQ)
t
equiType(t) ==
-- looks for an equivalent but expanded type
-- eg, equiType RN == QF I
-- the new algebra orginization no longer uses these sorts of types
-- termRW(t,$TypeEqui)
t
getUnderModeOf d ==
not PAIRP d => NIL
-- n := LASSOC(first d,$underDomainAlist) => d.n ----> $underDomainAlist NOW always NIL
for a in rest d for m in rest destructT d repeat
if m then return a
--deconstructM(t) ==
-- -- M is a type, which may contain type variables
-- -- results in a pair (type constructor . mode arguments)
-- CDR t and constructor? CAR t =>
-- dt := destructT CAR t
-- args := [ x for d in dt for y in t | ( x := d and y ) ]
-- c := [ x for d in dt for y in t | ( x := not d and y ) ]
-- CONS(c,args)
-- CONS(t,NIL)
deconstructT(t) ==
-- M is a type, which may contain type variables
-- results in a pair (type constructor . mode arguments)
KDR t and constructor? CAR t =>
dt := destructT CAR t
args := [ x for d in dt for y in t | ( x := d and y ) ]
c := [ x for d in dt for y in t | ( x := not d and y ) ]
CONS(c,args)
CONS(t,NIL)
constructT(c,A) ==
-- c is a type constructor, A a list of argument types
A => [if d then POP A else POP c for d in destructT CAR c]
c
constructM(c,A) ==
-- replaces top level RE's or QF's by equivalent types, if possible
containsVars(c) or containsVars(A) => NIL
-- collapses illegal FE's
CAR(c) = $FunctionalExpression => eqType defaultTargetFE CAR A
eqType constructT(c,A)
replaceLast(A,t) ==
-- replaces the last element of the nonempty list A by t (constructively
nreverse RPLACA(reverse A,t)
destructT(functor)==
-- provides a list of booleans, which indicate whether the arguments
-- to the functor are category forms or not
GETDATABASE(opOf functor,'COSIG)
constructTowerT(t,TL) ==
-- t is a type, TL a list of constructors and argument lists
-- t is embedded into TL
while TL and t repeat
[c,arg,:TL] := TL
t0 := constructM(c,replaceLast(arg,t))
t := canCoerceFrom(t,t0) and t0
t
bubbleType(TL) ==
-- tries to move the last constructor in TL upwards
-- uses canCoerceFrom to test whether two constructors can be bubbled
[c1,arg1,:T1] := TL
null T1 or null arg1 => TL
[c2,arg2,:T2] := T1
t := last arg1
t2 := constructM(c2,replaceLast(arg2,t))
arg1 := replaceLast(arg1,t2)
newCanCoerceCommute(c2,c1) or canCoerceCommute(c2, c1) =>
bubbleType [c1,arg1,:T2]
TL
bubbleConstructor(TL) ==
-- TL is a nonempty list of type constructors and nonempty argument
-- lists representing a deconstructed type
-- then the lowest constructor is bubbled to the top
[c,arg,:T1] := TL
t := last arg
until null T1 repeat
[c1,arg1,:T1] := T1
arg1 := replaceLast(arg1,t)
t := constructT(c1,arg1)
constructT(c,replaceLast(arg,t))
compareTT(t1,t2) ==
-- 'T if type t1 is more nested than t2
-- otherwise 'T if t1 is lexicographically greater than t2
EQCAR(t1,$QuotientField) or
MEMQ(opOf t2,[$QuotientField, 'SimpleAlgebraicExtension]) => NIL
CGREATERP(PRIN2CVEC opOf t1,PRIN2CVEC opOf t2)
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|