aboutsummaryrefslogtreecommitdiff
path: root/src/interp/i-coerfn.boot
blob: 911df807fb6d5702e4235f3b9e0b1bcd89db4257 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
-- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:
--
--     - Redistributions of source code must retain the above copyright
--       notice, this list of conditions and the following disclaimer.
--
--     - Redistributions in binary form must reproduce the above copyright
--       notice, this list of conditions and the following disclaimer in
--       the documentation and/or other materials provided with the
--       distribution.
--
--     - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--       names of its contributors may be used to endorse or promote products
--       derived from this software without specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


import i_-coerce
)package "BOOT"

$coerceFailure := GENSYM()

position1(x,y) ==
  -- this is used where we want to assume a 1-based index
  1 + position(x,y)

--% Direct Product, New and Old

DP2DP(u,source is [.,n,S],target is [.,m,T]) ==
  n ^= m => nil
  u = '_$fromCoerceable_$ => canCoerce(S,T)
  null (u' := coerceInt(objNewWrap(u,['Vector,S]),['Vector,T])) =>
    coercionFailure()
  objValUnwrap u'

--% Distributed Multivariate Polynomials, New and Old

Dmp2Dmp(u,source is [dmp,v1,S], target is [.,v2,T]) ==
  -- the variable lists must share some variables, or u is a constant
  u = '_$fromCoerceable_$ =>
    v:= intersection(v1,v2)
    v and
      w2:= SETDIFFERENCE(v2,v)
      t1:= if w1 then [dmp,w1,S] else S
      t2:= if w2 then [dmp,w2,T] else T
      canCoerce(t1,t2)
  null u => domainZero(target)
  u is [[e,:c]] and e=LIST2VEC [0 for v in v1] =>
    z:= coerceInt(objNewWrap(c,S),target) => objValUnwrap(z)
    coercionFailure()
  v:= intersection(v1,v2) =>
    w1:= SETDIFFERENCE(v1,v) =>
      coerceDmp1(u,source,target,v,w1)
    coerceDmp2(u,source,target)
  coercionFailure()

coerceDmp1(u,source is [.,v1,S],target is [.,v2,T],v,w) ==
  -- coerces one Dmp to another, where v1 is not a subset of v2
  -- v is the intersection, w the complement of v1 and v2
  t:= ['DistributedMultivariatePolynomial,w,S]
  x:= domainZero(target)
  one:= domainOne(T)
  plusfunc:= getFunctionFromDomain('_+,target,[target,target])
  multfunc:= getFunctionFromDomain('_*,target,[target,target])
  pat1:= [member(x,v) for x in v1]
  pat2:= [member(x,w) for x in v1]
  pat3:= [member(x,v) and POSN1(x,v) for x in v2]
  for [e,:c] in u until not z repeat
    exp:= LIST2VEC [y for x in pat2 for y in VEC2LIST e | x]
    z:= coerceInt(objNewWrap([CONS(exp,c)],t),target) =>
      li:= [y for x in pat1 for y in VEC2LIST e | x]
      a:= [CONS(LIST2VEC [if x then li.x else 0 for x in pat3],one)]
      x:= SPADCALL(x,SPADCALL(objValUnwrap(z),a,multfunc),plusfunc)
  z => x
  coercionFailure()

coerceDmp2(u,source is [.,v1,S],target is [.,v2,T]) ==
  -- coerces one Dmp to another, where v1 is included in v2
  x:= domainZero(target)
  one:= domainOne(T)
  plusfunc:= getFunctionFromDomain('_+,target,[target,target])
  multfunc:= getFunctionFromDomain('_*,target,[target,target])
  pat:= [member(x,v1) and POSN1(x,v1) for x in v2]
  for [e,:c] in u until not z repeat
    z:= coerceInt(objNewWrap(c,S),target) =>
      li:= VEC2LIST e
      a:= [CONS(LIST2VEC [if x then li.x else 0 for x in pat],one)]
      x:= SPADCALL(x,SPADCALL(objValUnwrap(z),a,multfunc),plusfunc)
    NIL
  z => x
  coercionFailure()

Dmp2Expr(u,source is [dmp,vars,S], target is [Expr,T]) ==
    u = '_$fromCoerceable_$ => canCoerce(S, target)

    null vars =>
        [[., :c]] := u
        not (c := coerceInt(objNewWrap(c, S), target)) => coercionFailure()
        objValUnwrap(c)

    syms := [objValUnwrap coerceInt(objNewWrap(var, $Symbol), target) for
                var in vars]
    sum := domainZero(target)

    plus := getFunctionFromDomain("+",  target, [target, target])
    mult := getFunctionFromDomain("*",  target, [target, target])
    expn := getFunctionFromDomain("**", target, [target, $Integer])

    for [e, :c] in u repeat
        not (c := coerceInt(objNewWrap(c, S), target)) => coercionFailure()
        c := objValUnwrap(c)
        term := domainOne(target)
        for i in 0.. for sym in syms repeat
            exp := e.i
            e.i > 0 => term := SPADCALL(term, SPADCALL(sym, e.i, expn), mult)
        sum := SPADCALL(sum, SPADCALL(c, term, mult), plus)

    sum

Dmp2Mp(u, source is [dmp, x, S], target is [mp, y, T]) ==
  source' := [dmp,y,T]
  u = '_$fromCoerceable_$ =>
    x = y => canCoerce(S,T)
    canCoerce(source',target)
  null u => domainZero(target)  -- 0 dmp is = nil
  x ^= y =>
    (u' := coerceInt(objNewWrap(u,source),source')) or coercionFailure()
    (u' := coerceInt(u',target)) or coercionFailure()
    objValUnwrap(u')

  -- slight optimization for case #u = 1, x=y , #x =1 and S=T
  -- I know it's pathological, but it may avoid an instantiation
  (x=y) and (1 = #u) and (1 = #x) and (S = T) =>
    [1,1,[(CAAR u).0,0,:CDAR u]]

  (u' := coerceDmpCoeffs(u,S,T)) = 'failed =>
    coercionFailure()
  plusfunc := getFunctionFromDomain("+",target,[target,target])
  u'' := genMpFromDmpTerm(u'.0, 0)
  for i in 1..(#u' - 1) repeat
    u'' := SPADCALL(u'',genMpFromDmpTerm(u'.i, 0),plusfunc)
  u''

coerceDmpCoeffs(u,S,T) ==
  -- u is a dmp, S is domain of coeffs, T is domain to coerce coeffs to
  S = T => u
  u' := nil
  bad := nil
  for [e,:c] in u repeat
    bad => nil
    null (c' := coerceInt(objNewWrap(c,S),T)) => return (bad := true)
    u' := [[e,:objValUnwrap(c')],:u']
  bad => 'failed
  nreverse u'

sortAndReorderDmpExponents(u,vl) ==
  vl' := reverse MSORT vl
  n := (-1) + #vl
  pos := LIST2VEC LZeros (n+1)
  for i in 0..n repeat pos.i := position(vl.i,vl')
  u' := nil
  for [e,:c] in u repeat
    e' := LIST2VEC LZeros (n+1)
    for i in 0..n repeat e'.(pos.i) := e.i
    u' := [[e',:c],:u']
  reverse u'

domain2NDmp(u, source, target is [., y, T]) ==
  target' := ['DistributedMultivariatePolynomial,y,T]
  u = '_$fromCoerceable_$ => canCoerce(source,target')
  (u' := coerceInt(objNewWrap(u,source),target')) =>
    (u'' := coerceInt(u',target)) =>
      objValUnwrap(u'')
    coercionFailure()
  coercionFailure()

Dmp2NDmp(u,source is [dmp,x,S],target is [ndmp,y,T]) ==
  -- a null DMP = 0
  null u => domainZero(target)
  target' := [dmp,y,T]
  u = '_$fromCoerceable_$ => Dmp2Dmp(u,source,target')
  (u' := Dmp2Dmp(u,source,target')) => addDmpLikeTermsAsTarget(u',target)
  coercionFailure()

addDmpLikeTermsAsTarget(u,target) ==
  u' := domainZero(target)
  func := getFunctionFromDomain("+",target,[target,target])
  for t in u repeat u' := SPADCALL(u',[t],func)
  u'

-- rewrite ?
Dmp2P(u, source is [dmp,vl, S], target is [.,T]) ==
  -- a null DMP = 0
  null u => domainZero(target)
  u = '_$fromCoerceable_$ =>
    t := canCoerce(S,T)
    null t => canCoerce(S,target)
    t

  S is ['Polynomial,.] =>
    mp := coerceInt(objNewWrap(u,source),['MultivariatePolynomial,vl,S])
      or coercionFailure()
    p := coerceInt(mp,target) or coercionFailure()
    objValUnwrap p

  -- slight optimization for case #u = 1, #vl =1 and S=T
  -- I know it's pathological, but it may avoid an instantiation
  (1 = #u) and (1 = #vl) and (S = T) =>
    (lexp:= (CAAR u).0) = 0 => [1,:CDAR u]
    [1,vl.0,[lexp,0,:CDAR u]]

  vl' := reverse MSORT vl
  source' := [dmp,vl',S]
  target' := ['MultivariatePolynomial,vl',S]
  u' := sortAndReorderDmpExponents(u,vl)
  u' := coerceInt(objNewWrap(u',source'),target')
  if u' then
    u' := translateMpVars2PVars (objValUnwrap(u'),vl')
    u' := coerceInt(objNewWrap(u',['Polynomial,S]),target)
  u' => objValUnwrap(u')
  -- get drastic. create monomials
  source' := [dmp,vl,T]
  u' := domainZero(target)
  oneT := domainOne(T)
  plusfunc := getFunctionFromDomain("+",target,[target,target])
  multfunc := getFunctionFromDomain("*",target,[target,target])
  for [e,:c] in u repeat
    (c' := coerceInt(objNewWrap(c,S),target)) or coercionFailure()
    (e' := coerceInt(objNewWrap([[e,:oneT]],source'),target)) or
      coercionFailure()
    t := SPADCALL(objValUnwrap(e'),objValUnwrap(c'),multfunc)
    u' := SPADCALL(u',t,plusfunc)
  coercionFailure()

translateMpVars2PVars (u, vl) ==
  u is [ =1, v, :termlist] =>
    [ 1, vl.(v-1),
      :[[e,:translateMpVars2PVars(c,vl)] for [e,:c] in termlist]]
  u

Dmp2Up(u, source is [dmp,vl,S],target is [up,var,T]) ==
  null u =>    -- this is true if u = 0
    domainZero(target)

  u = '_$fromCoerceable_$ =>
    member(var,vl) =>
      vl' := remove(vl,var)
      null vl' =>         -- no remaining variables
        canCoerce(S,T)
      null rest vl' =>    -- one remaining variable
        canCoerce([up,first vl',S],T)
      canCoerce([dmp,vl',S], T)
    canCoerce(source,T)

  -- check constant case
  (null rest u) and (first(u) is [e,:c]) and
    ( and/[(0 = e.i) for i in 0..(-1 + #vl)] ) =>
      (x := coerceInt(objNewWrap(c,S),target)) or coercionFailure()
      objValUnwrap(x)

  -- check non-member case
  null member(var,vl) =>
    (u' := coerceInt(objNewWrap(u,source),T)) or coercionFailure()
    [[0,:objValUnwrap u']]

  vl' := remove(vl,var)

  -- only one variable in DMP case
  null vl' =>
    u' := nreverse SORTBY('CAR,[[e.0,:c] for [e,:c] in u])
    (u' := coerceInt(objNewWrap(u',[up,var,S]),target)) or
      coercionFailure()
    objValUnwrap u'

  S1 := [dmp,vl',S]
  plusfunc:= getFunctionFromDomain('_+,T,[T,T])
  zero := getConstantFromDomain('(Zero),T)
  x := NIL
  pos:= POSN1(var,vl)
  for [e,:c] in u until not y repeat
    exp:= e.pos
    e1:= removeVectorElt(e,pos)
    y:= coerceInt(objNewWrap([[e1,:c]],S1),T) =>
      -- need to be careful about zeros
      p:= ASSQ(exp,x) =>
        c' := SPADCALL(CDR p,objValUnwrap(y),plusfunc)
        c' = zero => x := REMALIST(x,exp)
        RPLACD(p,c')
      zero = objValUnwrap(y) => 'iterate
      x := CONS(CONS(exp,objValUnwrap(y)),x)
  y => nreverse SORTBY('CAR,x)
  coercionFailure()

removeVectorElt(v,pos) ==
  -- removes the pos'th element from vector v
  LIST2VEC [x for x in VEC2LIST v for y in 0.. | not (y=pos)]

removeListElt(l,pos) ==
  pos = 0 => CDR l
  [CAR l, :removeListElt(CDR l,pos-1)]

NDmp2domain(u,source is [ndmp,x,S],target) ==
  -- a null NDMP = 0
  null u => domainZero(target)
  dmp := 'DistributedMultivariatePolynomial
  source' := [dmp,x,S]
  u = '_$fromCoerceable_$ => canCoerce(source',target)
  u' := addDmpLikeTermsAsTarget(u,source')
  (u'' := coerceInt(objNewWrap(u',source'),target)) =>
    objValUnwrap(u'')
  coercionFailure()

NDmp2NDmp(u,source is [ndmp,x,S],target is [.,y,T]) ==
  -- a null NDMP = 0
  null u => domainZero(target)
  dmp := 'DistributedMultivariatePolynomial
  source' := [dmp,x,S]
  target' := [dmp,y,T]
  u = '_$fromCoerceable_$ => canCoerce(source',target')
  u' := addDmpLikeTermsAsTarget(u,source')
  (u'' := coerceInt(objNewWrap(u',source'),target')) =>
    addDmpLikeTermsAsTarget(objValUnwrap(u''),target)
  coercionFailure()

--% Expression

Expr2Complex(u,source is [.,S], target is [.,T]) ==
    u = '_$fromCoerceable_$ => nil   -- can't tell, in general

    not member(S, [$Integer, $Float, $DoubleFloat]) => coercionFailure()
    not member(T, [$Float, $DoubleFloat]) => coercionFailure()

    complexNumeric := getFunctionFromDomain("complexNumeric", ['Numeric, S], [source])

    -- the following might fail
    cf := SPADCALL(u,complexNumeric)  -- returns a Float
    T = $DoubleFloat =>
        null (z := coerceInt(objNewWrap(cf, ['Complex, $Float]), ['Complex, $DoubleFloat])) =>
            coercionFailure()
        objValUnwrap z
    cf

Expr2Dmp(u,source is [Expr,S], target is [dmp,v2,T]) ==
    u = '_$fromCoerceable_$ => canCoerce(source, T)

    null v2 =>
        not (z := coerceInt(objNewWrap(u, source), T)) => coercionFailure()
        [[LIST2VEC NIL, :objValUnwrap z]]

    obj := objNewWrap(u, source)
    univ := coerceInt(obj, ['UnivariatePolynomial, first v2, T])
    not univ =>
        T = source => coercionFailure()
        not (z := coerceInt(obj, [dmp, v2, source])) =>
            coercionFailure()
        z := objValUnwrap z
        for term in z repeat
            [., :c] := term
            not (c := coerceInt(objNewWrap(c, source), T)) => coercionFailure()
            RPLACD(term, objValUnwrap c)
        z

    univ := objValUnwrap univ

    -- only one variable

    null rest v2 =>
        for term in univ repeat
            RPLACA(term, VECTOR CAR term)
        univ

    -- more than one variable

    summands := nil
    for [e,:c] in univ repeat
        summands := Expr2Dmp1(summands,
            LIST2VEC [e, :[0 for v in rest v2]], c, T, 1, rest v2, T)

    plus := getFunctionFromDomain("+", target, [target, target])
    sum  := domainZero target
    for summand in summands repeat
        sum := SPADCALL([summand], sum, plus)
    sum

Expr2Dmp1(summands, vec, c, source, index, varList, T) ==
    if null varList then
        if not (source = T) then
            not (c := coerceInt(objNewWrap(c, source), T)) => coercionFailure()
            c := objValUnwrap c
        summands := [[vec, :c], :summands]
    else
        univ := coerceInt(objNewWrap(c, source),
            ['UnivariatePolynomial, first varList, T])
        univ := objValUnwrap univ

        for [e,:c] in univ repeat
            vec := COPY_-SEQ vec
            vec.index := e
            summands := Expr2Dmp1(summands, vec, c, T, index+1, rest varList, T)
    summands

Expr2Mp(u,source is [Expr,S], target is [.,v2,T]) ==
    u = '_$fromCoerceable_$ => canCoerce(source, T)

    dmp := ['DistributedMultivariatePolynomial,v2,T]
    d   := Expr2Dmp(u,source, dmp)
    not (m := coerceInt(objNewWrap(d, dmp), target)) => coercionFailure()
    objValUnwrap m

Expr2Up(u,source is [Expr,S], target is [.,var,T]) ==
    u = '_$fromCoerceable_$ => canCoerce(source, T)
    kernelFunc := getFunctionFromDomain("kernels", source, [source])
    kernelDom  := ['Kernel, source]
    nameFunc   := getFunctionFromDomain("name", kernelDom, [kernelDom])
    kernels    := SPADCALL(u,kernelFunc)
    v1         := [SPADCALL(kernel, nameFunc) for kernel in kernels]

    not member(var, v1) => coercionFailure()

    -- variable is a kernel

    varKernel  := kernels.(POSN1(var, v1))
    univFunc   := getFunctionFromDomain("univariate", source, [source, kernelDom])
    sup        := ['SparseUnivariatePolynomial, source]

    fracUniv   := SPADCALL(u, varKernel, univFunc)
    denom      := CDR fracUniv

    not equalOne(denom, sup) => coercionFailure()

    numer      := CAR fracUniv
    uniType := ['UnivariatePolynomial, var, source]
    (z := coerceInt(objNewWrap(numer, uniType), target)) => objValUnwrap z
    coercionFailure()

--% Kernels over Expr

Ker2Ker(u,source is [.,S], target is [.,T]) ==
  u = '_$fromCoerceable_$ => canCoerce(S, T)
  not (m := coerceInt(objNewWrap(u, source), S)) => coercionFailure()
  u' := objValUnwrap m
  not (m' := coerceInt(objNewWrap(u', S), T)) => coercionFailure()
  u'' := objValUnwrap m'
  not (m'' := coerceInt(objNewWrap(u'', T), target)) => coercionFailure()
  objValUnwrap m''

Ker2Expr(u,source is [.,S], target) ==
  u = '_$fromCoerceable_$ => canCoerce(S, target)
  not (m := coerceByFunction(objNewWrap(u, source), S)) => coercionFailure()
  u':= objValUnwrap m
  not (m' := coerceInt(objNewWrap(u', S), target)) => coercionFailure()
  objValUnwrap m'


--% Factored objects

Factored2Factored(u,oldmode,newmode) ==
  [.,oldargmode,:.]:= oldmode
  [.,newargmode,:.]:= newmode
  u = '_$fromCoerceable_$ => canCoerce(oldargmode,newargmode)
  u' := unwrap u
  unit' := coerceInt(objNewWrap(first u',oldargmode),newargmode)
  null unit' => coercionFailure()
  factors := KDR u'
  factors' := [(coerceFFE(x,oldargmode,newargmode)) for x in factors]
  member('failed,factors') => coercionFailure()
  [objValUnwrap(unit'),:factors']

coerceFFE(ffe, oldmode, newmode) ==
  fac' := coerceInt(objNewWrap(ffe.1,oldmode),newmode)
  null fac' => 'failed
  LIST2VEC [ffe.0,objValUnwrap(fac'),ffe.2]

--% Complex

Complex2underDomain(u,[.,S],target) ==
  u = '_$fromCoerceable_$ => nil
  [r,:i] := u
  i=domainZero(S) =>
    [r',.,.]:= coerceInt(objNewWrap(r,S),target) or
      coercionFailure()
    r'
  coercionFailure()

Complex2FR(u,S is [.,R],target is [.,T]) ==
  u = '_$fromCoerceable_$ =>
    S ^= T => nil
    R = $Integer => true
    nil
  S ^= T => coercionFailure()
  package :=
    R = $Integer => ['GaussianFactorizationPackage]
    coercionFailure()
  factor := getFunctionFromDomain('factor,package,[S])
  SPADCALL(u,factor)

Complex2Expr(u, source is [.,S], target is [., T]) ==
  u = '_$fromCoerceable_$ =>
    T is ['Complex, T1] and canCoerceFrom(S, T1) or coercionFailure()
  E := defaultTargetFE source
  negOne := coerceInt(objNewWrap(-1, $Integer), E)
  null negOne => coercionFailure()
  sqrtFun := getFunctionFromDomain('sqrt, E, [E])
  i := SPADCALL(objValUnwrap negOne, sqrtFun)
  realFun := getFunctionFromDomain('real, source, [source])
  imagFun := getFunctionFromDomain('imag, source, [source])
  real := SPADCALL(u, realFun)
  imag := SPADCALL(u, imagFun)
  realExp := coerceInt(objNewWrap(real, S), E)
  null realExp => coercionFailure()
  imagExp := coerceInt(objNewWrap(imag, S), E)
  null imagExp => coercionFailure()
  timesFun := getFunctionFromDomain('_*, E, [E, E])
  plusFun  := getFunctionFromDomain('_+, E, [E, E])
  newVal := SPADCALL(objValUnwrap(realExp),
             SPADCALL(i, objValUnwrap imagExp, timesFun), plusFun)
  newObj := objNewWrap(newVal, E)
  finalObj := coerceInt(newObj, target)
  finalObj => objValUnwrap finalObj
  coercionFailure()

--% Integer

I2EI(n,source,target) ==
  n = '_$fromCoerceable_$ => nil
  if not ODDP(n) then n else coercionFailure()

I2OI(n,source,target) ==
  n = '_$fromCoerceable_$ => nil
  if ODDP(n) then n else coercionFailure()

I2PI(n,source,target) ==
  n = '_$fromCoerceable_$ => nil
  if n > 0 then n else coercionFailure()

I2NNI(n,source,target) ==
  n = '_$fromCoerceable_$ => nil
  if n >= 0 then n else coercionFailure()

--% List

L2Tuple(val, source is [.,S], target is [.,T]) ==
    val = '_$fromCoerceable_$ => canCoerce(S,T)
    null (object := coerceInt1(objNewWrap(val,source), ['List, T])) =>
      coercionFailure()
    asTupleNew0 objValUnwrap object

L2DP(l, source is [.,S], target is [.,n,T]) ==
  -- need to know size of the list
  l = '_$fromCoerceable_$ => nil
  n ^= SIZE l => coercionFailure()
  (v := coerceInt(objNewWrap(LIST2VEC l,['Vector,S]),['Vector,T])) or
    coercionFailure()
  V2DP(objValUnwrap v, ['Vector, T], target)

V2DP(v, source is [.,S], target is [.,n,T]) ==
  -- need to know size of the vector
  v = '_$fromCoerceable_$ => nil
  n ^= SIZE v => coercionFailure()
  (v1 := coerceInt(objNewWrap(v,source),['Vector,T])) or
    coercionFailure()
  dpFun  := getFunctionFromDomain('directProduct, target, [['Vector,T]])
  SPADCALL(objValUnwrap v1, dpFun)

L2V(l, source is [.,S], target is [.,T]) ==
  l = '_$fromCoerceable_$ => canCoerce(S,T)
  (v := coerceInt(objNewWrap(LIST2VEC l,['Vector,S]),target)) or
    coercionFailure()
  objValUnwrap(v)

V2L(v, source is [.,S], target is [.,T]) ==
  v = '_$fromCoerceable_$ => canCoerce(S,T)
  (l := coerceInt(objNewWrap(VEC2LIST v,['List,S]),target)) or
    coercionFailure()
  objValUnwrap(l)

L2M(u,[.,D],[.,R]) ==
  u = '_$fromCoerceable_$ => nil
  D is ['List,E] and isRectangularList(u,#u,# first u) =>
    u' := nil
    for x in u repeat
      x' := nil
      for y in x repeat
        (y' := coerceInt(objNewWrap(y,E),R)) or coercionFailure()
        x' := [objValUnwrap(y'),:x']
      u' := [LIST2VEC reverse x',:u']
    LIST2VEC reverse u'
  coercionFailure()

L2Record(l,[.,D],[.,:al]) ==
  l = '_$fromCoerceable_$ => nil
  #l = #al =>
    v:= [u for x in l for [":",.,D'] in al] where u() ==
      T:= coerceInt(objNewWrap(x,D),D') or return 'failed
      objValUnwrap(T)
    v = 'failed => coercionFailure()
    #v = 2 => [v.0,:v.1]
    LIST2VEC v
  coercionFailure()

L2Rm(u,source is [.,D],target is [.,n,m,R]) ==
  u = '_$fromCoerceable_$ => nil
  D is ['List,E] and isRectangularList(u,n,m) =>
    L2M(u,source,['Matrix,R])
  coercionFailure()

L2Sm(u,source is [.,D],[.,n,R]) ==
  u = '_$fromCoerceable_$ => nil
  D is ['List,E] and isRectangularList(u,n,n) =>
    L2M(u,source,['Matrix,R])
  coercionFailure()

L2Set(x,source is [.,S],target is [.,T]) ==
  x = '_$fromCoerceable_$ => canCoerce(S,T)
  -- call library function  brace  to get a set
  target' := ['Set,S]
  u := objNewWrap(
    SPADCALL(x,getFunctionFromDomain('brace,target',[source])),
      target')
  (u := coerceInt(u,target)) or coercionFailure()
  objValUnwrap u

Set2L(x,source is [.,S],target is [.,T]) ==
  x = '_$fromCoerceable_$ => canCoerce(S,T)
  -- call library function  destruct  to get a list
  u := objNewWrap(
    SPADCALL(x,getFunctionFromDomain('destruct,source,[source])),
      ['List,S])
  (u := coerceInt(u,target)) or coercionFailure()
  objValUnwrap u

Agg2Agg(x,source is [agg1,S],target is [.,T]) ==
  x = '_$fromCoerceable_$ => canCoerce(S,T)
  S = T => coercionFailure()         -- library function
  target' := [agg1,T]
  (u := coerceInt(objNewWrap(x,source),target')) or coercionFailure()
  (u := coerceInt(u,target)) or coercionFailure()
  objValUnwrap u

Agg2L2Agg(x,source is [.,S],target) ==
  -- tries to use list as an intermediate type
  mid := ['List,S]
  x = '_$fromCoerceable_$ =>
    canCoerce(source,mid) and canCoerce(mid,target)
  (u := coerceInt(objNewWrap(x,source),mid)) or coercionFailure()
  (u := coerceInt(u,target)) or coercionFailure()
  objValUnwrap u

isRectangularList(x,p,q) ==
  p=0 or p=#x =>
    n:= #first x
    and/[n=#y for y in rest x] => p=0 or q=n

--% Matrix

M2L(x,[.,S],target) ==
  mid := ['Vector,['Vector,S]]
  x = '_$fromCoerceable_$ => canCoerce(mid,target)
  (u := coerceInt(objNewWrap(x,mid),target)) or coercionFailure()
  objValUnwrap u

M2M(x,[.,R],[.,S]) ==
  x = '_$fromCoerceable_$ => canCoerce(R,S)
  n := # x
  m := # x.0
  v := nil
  for i in 0..(n-1) repeat
    u := nil
    for j in 0..(m-1) repeat
      y := x.i.j
      (y' := coerceInt(objNewWrap(y,R),S)) or coercionFailure()
      u := [objValUnwrap y',:u]
    v := [LIST2VEC reverse u,:v]
  LIST2VEC reverse v

M2Rm(x,source is [.,R],[.,p,q,S]) ==
  x = '_$fromCoerceable_$ => nil
  n:= #x
  m:= #x.0
  n=p and m=q => M2M(x,source,[nil,S])
  coercionFailure()

M2Sm(x,source is [.,R],[.,p,S]) ==
  x = '_$fromCoerceable_$ => nil
  n:= #x
  m:= #x.(0)
  n=m and m=p => M2M(x,source,[nil,S])
  coercionFailure()

M2V(x,[.,S],target) ==
  mid := ['Vector,['Vector,S]]
  x = '_$fromCoerceable_$ =>  canCoerce(mid,target)
  (u := coerceInt(objNewWrap(x,mid),target)) or coercionFailure()
  objValUnwrap u

--% Multivariate Polynomial

Mp2Dmp(u, source is [., x, S], target is [dmp, y, T]) ==
  -- Change the representation to a DMP with the same variables and
  -- coerce.
  target' := [dmp,x,S]
  u = '_$fromCoerceable_$ => canCoerce(target',target)

  -- check if we have a constant
  u is [ =0,:c] =>
    null (u' := coerceInt(objNewWrap(c,S),target)) =>
      coercionFailure()
    objValUnwrap(u')

  plus := getFunctionFromDomain('_+,target',[target',target'])
  mult := getFunctionFromDomain('_*,target',[target',target'])
  one := domainOne(S)
  zero := domainZero(S)
  (u' := coerceInt(objNewWrap(Mp2SimilarDmp(u,S,#x,plus,mult,one,zero),
    target'),target)) or coercionFailure()
  objValUnwrap(u')

Mp2SimilarDmp(u,S,n,plus,mult,one,zero) ==
  u is [ =0,:c] =>
    c = zero => NIL  -- zero for dmp
    [[LIST2VEC LZeros n,:c]]
  u is [ =1,x,:terms] =>
    u' := NIL  -- zero for dmp
    for [e,:c] in terms repeat
      e' := LIST2VEC LZeros n
      e'.(x-1) := e
      t := [[e',:one]]
      t := SPADCALL(t,Mp2SimilarDmp(c,S,n,plus,mult,one,zero),mult)
      u' := SPADCALL(u',t,plus)
    u'

Mp2Expr(u,source is [mp,vars,S], target is [Expr,T]) ==
    u = '_$fromCoerceable_$ => canCoerce(S, target)

    dmp := ['DistributedMultivariatePolynomial, vars, S]
    not (d := coerceInt(objNewWrap(u, source), dmp)) => coercionFailure()
    Dmp2Expr(objValUnwrap d, dmp, target)

Mp2FR(u,S is [.,vl,R],[.,T]) ==
  u = '_$fromCoerceable_$ =>
    S ^= T => nil
    R in '((Integer) (Fraction (Integer))) => true
    nil
  S ^= T => coercionFailure()
  package :=
    R = $Integer =>
      ovl := ['OrderedVariableList, vl]
      ['MultivariateFactorize,ovl, ['IndexedExponents, ovl],R,S]
    R is ['Fraction, D] =>
      ovl := ['OrderedVariableList, vl]
      package := ['MRationalFactorize,['IndexedExponents, ovl], ovl, D, S]
    coercionFailure()
  factor := getFunctionFromDomain('factor,package,[S])
  SPADCALL(u,factor)

Mp2Mp(u,source is [mp,x,S], target is [.,y,T]) ==
  -- need not deal with case of x = y (coerceByMapping)
  common := intersection(y,x)
  x' := SETDIFFERENCE(x,common)
  y' := SETDIFFERENCE(y,common)

  u = '_$fromCoerceable_$ =>
    x = y => canCoerce(S,T)
    null common => canCoerce(source,T)
    null x' => canCoerce(S,target)
    null y' => canCoerce([mp,x',S],T)
    canCoerce([mp,x',S],[mp,y',T])

  -- first check for constant case
  u is [ =0,:c] =>
    (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure()
    objValUnwrap(u')

  plus  := getFunctionFromDomain('_+,target,[target,target])

  -- now no-common-variables case

  null common =>
    times := getFunctionFromDomain('_*,target,[target,target])
    expn  := getFunctionFromDomain('_*_*,target,
      [target,$NonNegativeInteger])
    Mp2MpAux0(u,S,target,x,plus,times,expn)

  -- if source vars are all in target
  null x' =>
    monom := getFunctionFromDomain('monomial,target,
      [target,['OrderedVariableList,y],$NonNegativeInteger])
    Mp2MpAux1(u,S,target,x,y,plus,monom)

  -- if target vars are all in source
  null y' =>    -- change source to MP[common] MP[x'] S
    univariate := getFunctionFromDomain('univariate,
      source,[source,['OrderedVariableList,x]])
    u' := Mp2MpAux2(u,x,common,x',common,x',univariate,S,NIL)
    (u' := coerceInt(objNewWrap(u', [mp,common,[mp,x',S]]),target)) or
      coercionFailure()
    objValUnwrap(u')

  -- we have a mixture
  (u' := coerceInt(objNewWrap(u,source),[mp,common,[mp,x',S]])) or
    coercionFailure()
  (u' := coerceInt(u',target)) or coercionFailure()
  objValUnwrap(u')

Mp2MpAux0(u,S,target,vars,plus,times,expn) ==
  -- for case when no common variables
  u is [ =0,:c] =>
    (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure()
    objValUnwrap(u')
  [.,var,:terms] := u
  [mp,.,T] := target
  x := coerceInt(objNewWrap(vars.(var-1),['Variable,vars.(var-1)]),
    [mp,vars,$Integer]) or coercionFailure()
  (x := coerceInt(x,T)) or coercionFailure()
  x := [0,:objValUnwrap x]
  sum := domainZero(target)
  for [e,:c] in terms repeat
    prod := SPADCALL(SPADCALL(x,e,expn),
      Mp2MpAux0(c,S,target,vars,plus,times,expn),times)
    sum := SPADCALL(sum,prod,plus)
  sum

Mp2MpAux1(u,S,target,varl1,varl2,plus,monom) ==
  -- for case when source vars are all in target
  u is [ =0,:c] =>
    (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure()
    objValUnwrap(u')
  [.,var,:terms] := u
  sum := domainZero(target)
  for [e,:c] in terms repeat
    mon := SPADCALL( Mp2MpAux1(c,S,target,varl1,varl2,plus,monom),
      position1(varl1.(var-1), varl2),e,monom)
    sum := SPADCALL(sum,mon,plus)
  sum

Mp2MpAux2(u,x,oldcomm,oldrest,common,restvars,univariate,S,isUnder) ==
  -- target vars are all in source
  mp2 := ['MultivariatePolynomial,oldcomm,['MultivariatePolynomial,
    oldrest,S]]
  common =>
    u is [ =0,:c] =>
      (u' := coerceInt(objNewWrap(c,S),mp2)) or coercionFailure()
      objValUnwrap(u')
    [var,:common] := common
    u' := SPADCALL(u,position1(var,x),univariate)
    null(rest(u')) and (first(first(u')) = 0) =>
      Mp2MpAux2(u,x,oldcomm,oldrest,common,restvars,univariate,S,isUnder)
    [1,position1(var,oldcomm),:[[e,:Mp2MpAux2(c,x,oldcomm,oldrest,
      common,restvars,univariate,S,isUnder)] for [e,:c] in u']]
  null isUnder =>
    [0,:Mp2MpAux2(u,x,oldcomm,oldrest,common,restvars,univariate,S,true)]
  -- just treat like elt of [mp,x',S]
  u is [ =0,:c] => u
  [var,:restvars] := restvars
  u' := SPADCALL(u,position1(var,x),univariate)
  null(rest(u')) and (first(first(u')) = 0) =>
    Mp2MpAux2(u,x,oldcomm,oldrest,common,restvars,univariate,S,isUnder)
  [1,position1(var,oldrest),:[[e,:Mp2MpAux2(c,x,oldcomm,oldrest,
    common,restvars,univariate,S,isUnder)] for [e,:c] in u']]

genMpFromDmpTerm(u, oldlen) ==

  -- given one term of a DMP representation of a polynomial, this creates
  -- the corresponding MP term.

  patlen := oldlen
  [e,:c] := u
  numexps := # e
  patlen >= numexps => [0, :c]
  for i in patlen..(numexps - 1) repeat
    e.i = 0 => patlen := patlen + 1
    return nil
  patlen >= numexps => [0, :c]
  [1, 1+patlen, [e.patlen,:genMpFromDmpTerm(u,patlen+1)]]

Mp2P(u, source is [mp,vl, S], target is [p,R]) ==
  u = '_$fromCoerceable_$ => canCoerce(S,target)
  S is ['Polynomial,.] => MpP2P(u,vl,S,R)
  vl' := REVERSE MSORT vl
  -- if Mp2Mp fails, a THROW will occur
  u' := Mp2Mp(u,source,[mp,vl',S])
  u' := translateMpVars2PVars (u',vl')
  (u' := coerceInt(objNewWrap(u',[p,S]),target)) or coercionFailure()
  objValUnwrap(u')

MpP2P(u,vl,PS,R) ==
  -- u has type MP(vl,PS). Want to coerce to P R.
  PR := ['Polynomial,R]
  u is [ =0,:c] =>
    (u' :=coerceInt(objNewWrap(c,PS),PR)) or
      coercionFailure()
    objValUnwrap u'
  [ .,pos,:ec] := u
  multivariate := getFunctionFromDomain('multivariate,
    PR,[['SparseUnivariatePolynomial,PR],$Symbol])
  sup := [[e,:MpP2P(c,vl,PS,R)] for [e,:c] in ec]
  p := SPADCALL(sup,vl.(pos-1),multivariate)
  --(p' :=coerceInt(objNewWrap(p,PS),['Polynomial,R])) or coercionFailure()
  --objValUnwrap(p')

Mp2Up(u,source is [mp,vl,S],target is [up,x,T]) ==
  u = '_$fromCoerceable_$ =>
    member(x,vl) =>
      vl = [x] => canCoerce(S,T)
      canCoerce([mp,delete(x,vl),S],T)
    canCoerce(source,T)

  u is [ =0,:c] =>      -- constant polynomial?
    (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure()
    objValUnwrap u'

  null member(x,vl) =>
    (u' := coerceInt(objNewWrap(u,source),T)) or coercionFailure()
    [[0,:objValUnwrap(u')]]

  vl = [x] =>
    u' := [[e,:c] for [e,.,:c] in CDDR u]
    (u' := coerceInt(objNewWrap(u',[up,x,S]),target))
      or coercionFailure()
    objValUnwrap u'

  -- do a univariate to transform u to a UP(x,P S) and then coerce again
  var := position1(x,vl)
  UPP := ['UnivariatePolynomial,x,source]
  univariate := getFunctionFromDomain('univariate,
    source,[source,['OrderedVariableList,vl]])
  upU := SPADCALL(u,var,univariate)  -- we may assume this has type UPP
  (u' := coerceInt(objNewWrap(upU,UPP),target)) or coercionFailure()
  objValUnwrap u'

--% OrderedVariableList

OV2OV(u,source is [.,svl], target is [.,tvl]) ==
  svl = intersection(svl,tvl) =>
    u = '_$fromCoerceable_$ => true
    position1(svl.(u-1),tvl)
  u = '_$fromCoerceable_$ => nil
  coercionFailure()

OV2P(u,source is [.,svl], target is [.,T]) ==
  u = '_$fromCoerceable_$ => true
  v := svl.(unwrap(u)-1)
  [1,v,[1,0,:domainOne(T)]]

OV2poly(u,source is [.,svl], target is [p,vl,T]) ==
  u = '_$fromCoerceable_$ =>
    p = 'UnivariatePolynomial => (# svl = 1) and (p = svl.0)
    and/[member(v,vl) for v in svl]
  v := svl.(unwrap(u)-1)
  val' := [1,:domainOne(T)]
  p = 'UnivariatePolynomial =>
    v ^= vl => coercionFailure()
    [[1,:domainOne(T)]]
  null member(v,vl) => coercionFailure()
  val' := [[1,:domainOne(T)]]
  source' := ['UnivariatePolynomial,v,T]
  (u' := coerceInt(objNewWrap(val',source'),target)) or
    coercionFailure()
  objValUnwrap(u')

OV2SE(u,source is [.,svl], target) ==
  u = '_$fromCoerceable_$ => true
  svl.(unwrap(u)-1)

OV2Sy(u,source is [.,svl], target) ==
  u = '_$fromCoerceable_$ => true
  svl.(unwrap(u)-1)

--% Polynomial

varsInPoly(u) ==
  u is [ =1, v, :termlist] =>
    [v,:varsInPoly(c) for [e,:c] in termlist]
  nil

P2FR(u,S is [.,R],[.,T]) ==
  u = '_$fromCoerceable_$ =>
    S ^= T => nil
    R in '((Integer) (Fraction (Integer))) => true
    nil
  S ^= T => coercionFailure()
  package :=
    R = $Integer =>
      ['MultivariateFactorize,$Symbol,['IndexedExponents, $Symbol],R,S]
    R is ['Fraction, D] =>
      package := ['MRationalFactorize,['IndexedExponents, $Symbol],$Symbol,
                 D, S]
    coercionFailure()
  factor := getFunctionFromDomain('factor,package,[S])
  SPADCALL(u,factor)

P2Dmp(u, source is [., S], target is [., y, T]) ==
  u = '_$fromCoerceable_$ =>
    -- might be able to say yes
    canCoerce(source,T)
  u is [ =0,:c] =>       -- polynomial is a constant
    (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure()
    objValUnwrap(u')
  univariate := getFunctionFromDomain('univariate,
    source,[source,$Symbol])
  plus := getFunctionFromDomain("+",target,[target,target])
  monom := getFunctionFromDomain('monomial,target,
    [target,['OrderedVariableList,y],$NonNegativeInteger])
  P2DmpAux(u,source,S,target,copy y,y,T,univariate,plus,monom)

P2Expr(u, source is [.,S], target is [., T]) ==
  u = '_$fromCoerceable_$ =>
    canCoerce(S, T)
  S = T => coercionFailure()
  newS := ['Polynomial, T]
  val := coerceInt(objNewWrap(u, source), newS)
  null val => coercionFailure()
  val := coerceInt(val, target)
  null val => coercionFailure()
  objValUnwrap val

P2DmpAux(u,source,S,target,varlist,vars,T,univariate,plus,monom) ==
  u is [ =0,:c] =>       -- polynomial is a constant
    (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure()
    objValUnwrap(u')

  -- if no variables left, try to go to underdomain of target (T)
  null vars =>
    (u' := coerceInt(objNewWrap(u,source),T)) or coercionFailure()
    -- if successful, embed
    (u' := coerceByFunction(u',target)) or coercionFailure()
    objValUnwrap(u')

  -- there are variables, so get them out of u
  [x,:vars] := vars
  sup := SPADCALL(u,x,univariate)  -- this is a SUP P S
  null sup =>           -- zero? unlikely.
    domainZero(target)
  -- degree 0 polynomial? (variable did not occur)
  null(rest(sup)) and first(sup) is [ =0,:c] =>
    -- call again, but with one less var
    P2DmpAux(c,source,S,target,varlist,vars,T,univariate,plus,monom)
  var := position1(x,varlist)
  u' := domainZero(target)
  for [e,:c] in sup repeat
    u'' := SPADCALL(
      P2DmpAux(c,source,S,target,varlist,vars,T,univariate,plus,monom),
        var,e,monom)
    u' := SPADCALL(u',u'',plus)
  u'

P2Mp(u, source is [., S], target is [., y, T]) ==
  u = '_$fromCoerceable_$ =>
    -- might be able to say yes
    canCoerce(source,T)
  univariate := getFunctionFromDomain('univariate,
    source,[source,$Symbol])
  P2MpAux(u,source,S,target,copy y,y,T,univariate)

P2MpAux(u,source,S,target,varlist,vars,T,univariate) ==
  u is [ =0,:c] =>       -- polynomial is a constant
    (u' := coerceInt(objNewWrap(c,S),target)) or
      coercionFailure()
    objValUnwrap(u')

  -- if no variables left, try to go to underdomain of target (T)
  null vars =>
    (u' := coerceInt(objNewWrap(u,source),T)) or
      coercionFailure()
    -- if successful, embed
    [ 0,:objValUnwrap(u')]

  -- there are variables, so get them out of u
  [x,:vars] := vars
  sup := SPADCALL(u,x,univariate)  -- this is a SUP P S
  null sup =>           -- zero? unlikely.
    domainZero(target)
  -- degree 0 polynomial? (variable did not occur)
  null(rest(sup)) and first(sup) is [ =0,:c] =>
    -- call again, but with one less var
    P2MpAux(c,source,S,target,varlist,vars,T,univariate)
  terms := [[e,:P2MpAux(c,source,S,target,varlist,vars,T,univariate)] for
    [e,:c] in sup]
  [1, position1(x,varlist), :terms]

varIsOnlyVarInPoly(u, var) ==
  u is [ =1, v, :termlist] =>
    v ^= var => nil
    and/[varIsOnlyVarInPoly(c,var) for [e,:c] in termlist]
  true

P2Up(u,source is [.,S],target is [.,x,T]) ==
  u = '_$fromCoerceable_$ => canCoerce(source,T)
  u is [ =0,:c] =>
    (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure()
    objValUnwrap(u')

  -- see if the target var is the polynomial vars
  varsFun := getFunctionFromDomain('variables,source,[source])
  vars := SPADCALL(u,varsFun)
  not member(x,vars) =>
    (u' := coerceInt(objNewWrap(u,source),T)) or coercionFailure()
    [[0,:objValUnwrap(u')]]

  -- do a univariate to transform u to a UP(x,P S) and then coerce again
  UPP := ['UnivariatePolynomial,x,source]
  univariate := getFunctionFromDomain('univariate,
    source,[source,$Symbol])
  upU := SPADCALL(u,x,univariate)  -- we may assume this has type UPP
  (u' := coerceInt(objNewWrap(upU,UPP),target)) or coercionFailure()
  objValUnwrap(u')

--% Fraction

Qf2PF(u,source is [.,D],target) ==
  u = '_$fromCoerceable_$ => canCoerce(D,target)
  [num,:den] := u
  num':= coerceInt(objNewWrap(num,D),target) or
    coercionFailure()
  num' := objValUnwrap num'
  den':= coerceInt(objNewWrap(den,D),target) or
    coercionFailure()
  den' := objValUnwrap den'
  equalZero(den', target) => throwKeyedMsg("S2IA0001",NIL)
  SPADCALL(num',den', getFunctionFromDomain("/",target,[target,target]))

Qf2F(u,source is [.,D,:.],target) ==
  D = $Integer =>
    u = '_$fromCoerceable_$ => true
    Rn2F(u,source,target)
  u = '_$fromCoerceable_$ => canCoerce(D,target)
  [num,:den] := u
  [.,:num']:= coerceInt(objNewWrap(num,D),target) or
    coercionFailure()
  [.,:den']:= coerceInt(objNewWrap(den,D),target) or
    coercionFailure()
  (unwrap num') * 1.0 / (unwrap den')

Rn2F(rnum, source, target) ==
  float(CAR(rnum)/CDR(rnum))

-- next function is needed in RN algebra code
--Rn2F([a,:b],source,target) ==
--  al:=if LINTP a then QLENGTHCODE a else 4
--  bl:=if LINTP b then QLENGTHCODE b else 4
--  MAX(al,bl) < 36 => FLOAT a / FLOAT b
--  sl:=0
--  if al>32 then
--     sl:=35*(al-32)/4
--     a:=a/2**sl
--  if bl>32 then
--     sbl:=35*(bl-32)/4
--     b:=b/2**sbl
--     sl:=sl-sbl
--  ans:=FLOAT a /FLOAT b
--  sl=0 => ans
--  ans*2**sl

Qf2domain(u,source is [.,D],target) ==
  -- tests whether it is an element of the underlying domain
  useUnder := (ut := underDomainOf target) and canCoerce(source,ut)
  u = '_$fromCoerceable_$ => useUnder
  not (containsPolynomial(D) and containsPolynomial(target)) and
    useUnder => coercionFailure()    -- let other mechanism handle it
  [num, :den] := u
  (num' := coerceInt(objNewWrap(num,D),target)) or coercionFailure()
  num' := objValUnwrap(num')
  equalOne(den,D) => num'
  (target is [.,[=$QuotientField,T]]) or
    (target is [.,.,[=$QuotientField,T]]) =>
      (den' := coerceInt(objNewWrap(den,D),T)) or coercionFailure()
      den' := [domainOne(T),:objValUnwrap(den')]
      timesfunc:= getFunctionFromDomain('_*,target,
        [[$QuotientField,T],target])
      SPADCALL(den',num',timesfunc)
  coercionFailure()

Qf2EF(u,[.,S],target) ==
  u = '_$fromCoerceable_$ => canCoerce(S,target)
  [num,:den] := u
  (num' := coerceInt(objNewWrap(num,S),target)) or
    coercionFailure()
  (den' := coerceInt(objNewWrap(den,S),target)) or
    coercionFailure()
  divfun := getFunctionFromDomain("/",target,[target,target])
  SPADCALL(objValUnwrap(num'),objValUnwrap(den'),divfun)

Qf2Qf(u0,[.,S],target is [.,T]) ==
  u0 = '_$fromCoerceable_$ =>
    S = ['Polynomial, [$QuotientField, $Integer]] and
      T = '(Polynomial (Integer)) => true
    canCoerce(S,T)
  [a,:b] := u0
  S = ['Polynomial, [$QuotientField, $Integer]] and
    T = '(Polynomial (Integer)) =>
      (a' := coerceInt(objNewWrap(a,S),target)) =>
        (b' := coerceInt(objNewWrap(b,S),target)) =>
          divfunc:= getFunctionFromDomain('_/,target,[target,target])
          SPADCALL(objValUnwrap(a'),objValUnwrap(b'),divfunc)
        coercionFailure()
      coercionFailure()
  (a' := coerceInt(objNewWrap(a,S),T)) =>
    (b' := coerceInt(objNewWrap(b,S),T)) =>
      [objValUnwrap(a'),:objValUnwrap(b')]
    coercionFailure()
  coercionFailure()

-- partOf(x,i) ==
--   VECP x => x.i
--   i=0 => first x
--   i=1 => rest x
--   systemError '"partOf"

--% RectangularMatrix

Rm2L(x,[.,.,.,R],target) == M2L(x,['Matrix,R],target)

Rm2M(x,[.,.,.,R],target is [.,S]) == M2M(x,[nil,R],target)

Rm2Sm(x,[.,n,m,S],[.,p,R]) ==
  x = '_$fromCoerceable_$ => n=m and m=p and canCoerce(S,R)
  n=m and m=p =>
    M2M(x,[nil,S],[nil,R])
  coercionFailure()

Rm2V(x,[.,.,.,R],target) == M2V(x,['Matrix,R],target)

--% Script

Scr2Scr(u, source is [.,S], target is [.,T]) ==
  u = '_$fromCoerceable_$ => canCoerce(S,T)
  null (v := coerceInt(objNewWrap(CDR u,S),T)) =>
    coercionFailure()
  [CAR u, :objValUnwrap(v)]

--% SparseUnivariatePolynomialnimial

SUP2Up(u,source is [.,S],target is [.,x,T]) ==
  u = '_$fromCoerceable_$ => canCoerce(source,T) or canCoerce(S,T)
  null u => u
  S = T => u
  -- try to go underneath first
  null (u' := coerceInt(objNewWrap(u,source),T)) =>
    -- must be careful in case any of the coeffs come back 0
    u' := NIL
    zero := getConstantFromDomain('(Zero),T)
    for [e,:c] in u repeat
      c' := objValUnwrap (coerceInt(objNewWrap(c,S),T) or
        coercionFailure())
      c' = zero => 'iterate
      u' := [[e,:c'],:u']
    nreverse u'
  [[0,:objValUnwrap u']]

--% SquareMatrix

Sm2L(x,[.,.,R],target) == M2L(x,['Matrix,R],target)

Sm2M(x,[.,n,R],target is [.,S]) == M2M(x,[nil,R],target)

Sm2PolyType(u,source is [sm,n,S], target is [pol,vl,T]) ==
  -- only really handles cases like:
  --      SM[2] P I -> P[x,y] SM[2] P I
  -- works for UP, MP, DMP and NDMP
  u = '_$fromCoerceable_$ => canCoerce(source,T)
  -- first want to check case S is Polynomial
  S is ['Polynomial,S'] =>
    -- check to see if variable occurs in any of the terms
    if ATOM vl
      then vl' := [vl]
      else vl' := vl
    novars := true
    for i in 0..(n-1) while novars repeat
      for j in 0..(n-1) while novars repeat
        varsUsed := varsInPoly u.i.j
        or/[member(x,varsUsed) for x in vl'] => novars := nil
    novars => coercionFailure()
    source' := [sm,n,[pol,vl,S]]
    null (u' := coerceInt(objNewWrap(u,source),source')) =>
      coercionFailure()
    null (u' := coerceInt(u',target)) =>
      coercionFailure()
    objValUnwrap(u')
  -- let other cases be handled by standard machinery
  coercionFailure()

Sm2Rm(x,[.,n,R],[.,p,q,S]) ==
  x = '_$fromCoerceable_$ => p=q and p=n and canCoerce(R,S)
  p=q and p=n =>
    M2M(x,[nil,R],[nil,S])
  coercionFailure()

Sm2V(x,[.,.,R],target) == M2V(x,['Matrix,R],target)

--% Symbol

Sy2OV(u,source,target is [.,vl]) ==
  u = '_$fromCoerceable_$ => nil
  position1(u,vl)

Sy2Dmp(u,source,target is [dmp,vl,S]) ==
  u = '_$fromCoerceable_$ => canCoerce(source,S)
  len:= #vl
  -1^=(n:= position(u,vl)) =>
    u:= wrap LIST [LIST2VEC [(n=i => 1; 0) for i in 0..len-1],:1]
    objValUnwrap(coerceInt(objNew(u,[dmp,vl,$Integer]),target))
  (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure()
  [[Zeros len,:objValUnwrap u]]

Sy2Mp(u,source,target is [mp,vl,S]) ==
  u = '_$fromCoerceable_$ => canCoerce(source,S)
  (n:= position1(u,vl)) ^= 0 =>
    [1,n,[1,0,:domainOne(S)]]
  (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure()
  [0,:objValUnwrap(u)]

Sy2NDmp(u,source,target is [ndmp,vl,S]) ==
  u = '_$fromCoerceable_$ => canCoerce(source,S)
  len:= #vl
  -1^=(n:= position(u,vl)) =>
    u:= wrap LIST [LIST2VEC [(n=i => 1; 0) for i in 0..len-1],:1]
    objValUnwrap(coerceInt(objNew(u,[ndmp,vl,$Integer]),target))
  (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure()
  [[Zeros len,:objValUnwrap(u)]]

Sy2P(u,source,target is [poly,S]) ==
  u = '_$fromCoerceable_$ => true
  -- first try to get it into an underdomain
  if (S ^= $Integer) then
    u' := coerceInt(objNewWrap(u,source),S)
    if u' then return [0,:objValUnwrap(u')]
  -- if that failed, return it as a polynomial variable
  [1,u,[1,0,:domainOne(S)]]

Sy2Up(u,source,target is [up,x,S]) ==
  u = '_$fromCoerceable_$ => canCoerce(source,S)
  u=x => [[1,:domainOne(S)]]
  (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure()
  [[0,:objValUnwrap u]]

Sy2Var(u,source,target is [.,x]) ==
  u = '_$fromCoerceable_$ => NIL
  u=x => u
  coercionFailure()

--% Univariate Polynomial

Up2Dmp(u,source is ['UnivariatePolynomial,var,S],
 target is ['DistributedMultivariatePolynomial,vl,T]) ==
  -- var must be a member of vl, or u is a constant
  u = '_$fromCoerceable_$ => member(var,vl) and canCoerce(S,target)
  null u => domainZero(target)
  u is [[e,:c]] and e=0 =>
    z:= coerceInt(objNewWrap(c,S),target) => objValUnwrap(z)
    coercionFailure()
  member(var,vl) =>
    x:= domainZero(target)
    one:= domainOne(T)
    plusfunc:= getFunctionFromDomain('_+,target,[target,target])
    multfunc:= getFunctionFromDomain('_*,target,[target,target])
    n:= #vl ; p:= POSN1(var,vl)
    l1:= not (p=0) and [0 for m in 1..p]
    l2:= not (p=n-1) and [0 for m in p..n-2]
    for [e,:c] in u until not z repeat
      z:= coerceInt(objNewWrap(c,S),target) =>
        y:= SPADCALL(objValUnwrap(z),
          [[LIST2VEC [:l1,e,:l2],:one]],multfunc)
        x:= SPADCALL(x,y,plusfunc)
    z => x
    coercionFailure()
  coercionFailure()

Up2Expr(u,source is [up,var,S], target is [Expr,T]) ==
    u = '_$fromCoerceable_$ => canCoerce(S, target)

    null u => domainZero(target)

    u is [[e,:c]] and e=0 =>
        (z := coerceInt(objNewWrap(c, S), target)) => objValUnwrap(z)
        coercionFailure()

    sym := objValUnwrap coerceInt(objNewWrap(var, $Symbol), target)

    plus := getFunctionFromDomain("+",  target, [target, target])
    mult := getFunctionFromDomain("*",  target, [target, target])
    expn := getFunctionFromDomain("**", target, [target, $Integer])

    -- coerce via Horner's rule

    [e1, :c1] := first u
    if not (S = target) then
        not (c1 := coerceInt(objNewWrap(c1, S), target)) => coercionFailure()
        c1 := objValUnwrap(c1)

    for [e2, :c2] in rest u repeat
        coef :=
            e1 - e2 = 1 => sym
            SPADCALL(sym, e1-e2, expn)
        if not (S = target) then
            not (c2 := coerceInt(objNewWrap(c2, S), target)) =>
                coercionFailure()
            c2 := objValUnwrap(c2)
        coef := SPADCALL(SPADCALL(c1, coef, mult), c2, plus)
        e1 := e2
        c1 := coef

    e1 = 0 => c1
    e1 = 1 => SPADCALL(sym, c1, mult)
    SPADCALL(SPADCALL(sym, e1, expn), c1, mult)

Up2FR(u,S is [.,x,R],target is [.,T]) ==
  u = '_$fromCoerceable_$ =>
    S ^= T => nil
    R in '((Integer) (Fraction (Integer))) => true
    nil
  S ^= T => coercionFailure()
  package :=
    R = $Integer => ['UnivariateFactorize,S]
    R = $RationalNumber => package := ['RationalFactorize,S]
    coercionFailure()
  factor := getFunctionFromDomain('factor,package,[S])
  SPADCALL(u,factor)

Up2Mp(u,source is [.,x,S], target is [.,vl,T]) ==
  u = '_$fromCoerceable_$ =>
    member(x,vl) => canCoerce(S,T)
    canCoerce(source,T)

  null u => domainZero(target)

  null(rest(u)) and (first(u) is [e,:c]) and e=0 =>
    x:= coerceInt(objNewWrap(c,S),target) => objValUnwrap(x)
    coercionFailure()

  null member(x,vl) =>
    (x := coerceInt(objNewWrap(u,source),T)) or coercionFailure()
    [0,:objValUnwrap(x)]

  plus  := getFunctionFromDomain('_+,target,[target,target])
  monom := getFunctionFromDomain('monomial,target,
    [target,['OrderedVariableList,vl],$NonNegativeInteger])
  sum := domainZero(target)
  pos := position1(x,vl)

  for [e,:c] in u repeat
    (p := coerceInt(objNewWrap(c,S),target)) or coercionFailure()
    mon := SPADCALL(objValUnwrap(p),pos,e,monom)
    sum := SPADCALL(sum,mon,plus)
  sum

Up2P(u,source is [.,var,S],target is [.,T]) ==
  u = '_$fromCoerceable_$ => canCoerce(S,target)
  null u => domainZero(target)
  u is [[e,:c]] and e=0 =>
    x:= coerceInt(objNewWrap(c,S),target) => objValUnwrap(x)
    coercionFailure()
  pol:= domainZero(target)
  one:= domainOne(T)
  plusfunc := getFunctionFromDomain("+",target,[target,target])
  multfunc := getFunctionFromDomain("*",target,[target,target])
  for [e,:c] in u until not x repeat
    x:= coerceInt(objNewWrap(c,S),target) =>
      term:= SPADCALL([1,var,[e,0,:one]],objValUnwrap(x),multfunc)
      pol:= SPADCALL(pol,term,plusfunc)
    coercionFailure()
  x => pol
  coercionFailure()

Up2SUP(u,source is [.,x,S],target is [.,T]) ==
  u = '_$fromCoerceable_$ => canCoerce(source,T) or canCoerce(S,T)
  null u => u
  S = T => u
  -- try to go underneath first
  null (u' := coerceInt(objNewWrap(u,source),T)) =>
    u' := NIL
    zero := getConstantFromDomain('(Zero),T)
    for [e,:c] in u repeat
      c' := objValUnwrap (coerceInt(objNewWrap(c,S),T) or
        coercionFailure())
      c' = zero => 'iterate
      u' := [[e,:c'],:u']
    nreverse u'
  [[0,:objValUnwrap u']]

Up2Up(u,source is [.,v1,S], target is [.,v2,T]) ==
  -- if v1 = v2 then this is handled by coerceIntByMap
  -- this only handles case where poly is a constant
  u = '_$fromCoerceable_$ =>
    v1=v2 => canCoerce(S,T)
    canCoerce(source,T)
  null u => u
  u is [[e,:c]] and e=0 =>
    x:= coerceInt(objNewWrap(c,S),target) => objValUnwrap(x)
    coercionFailure()
  coercionFailure()

insertAlist(a,b,l) ==
  null l => [[a,:b]]
  a = l.0.0 => (RPLAC(CDAR l,b);l)
  _?ORDER(l.0.0,a) => [[a,:b],:l]
  (fn(a,b,l);l) where fn(a,b,l) ==
    null rest l => RPLAC(rest l,[[a,:b]])
    a = l.1.0 => RPLAC(rest l.1,b)
    _?ORDER(l.1.0,a) => RPLAC(rest l,[[a,:b],:rest l])
    fn(a,b,rest l)

--% Union

Un2E(x,source,target) ==
  ['Union,:branches] := source
  x = '_$fromCoerceable_$ =>
    and/[canCoerce(t, target) for t in branches | ^ STRINGP t]
  coerceUn2E(x,source)

--% Variable

Var2OV(u,source,target is [.,vl]) ==
  sym := CADR source
  u = '_$fromCoerceable_$ => member(sym,vl)
  member(sym,vl) => position1(sym,vl)
  coercionFailure()

Var2Dmp(u,source,target is [dmp,vl,S]) ==
  sym := CADR source
  u = '_$fromCoerceable_$ => member(sym,vl) or canCoerce(source,S)

  len := #vl
  -1 ^= (n:= position(sym,vl)) =>
    LIST [LIST2VEC [(n=i => 1; 0) for i in 0..len-1],
      :getConstantFromDomain('(One),S)]
  (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure()
  [[Zeros len,:objValUnwrap u]]

Var2Gdmp(u,source,target is [dmp,vl,S]) ==
  sym := CADR source
  u = '_$fromCoerceable_$ => member(sym,vl) or canCoerce(source,S)

  len := #vl
  -1 ^= (n:= position(sym,vl)) =>
    LIST [LIST2VEC [(n=i => 1; 0) for i in 0..len-1],
      :getConstantFromDomain('(One),S)]
  (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure()
  [[Zeros len,:objValUnwrap u]]

Var2Mp(u,source,target is [mp,vl,S]) ==
  sym := CADR source
  u = '_$fromCoerceable_$ => member(sym,vl) or canCoerce(source,S)
  (n:= position1(u,vl)) ^= 0 =>
    [1,n,[1,0,:getConstantFromDomain('(One),S)]]
  (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure()
  [0,:objValUnwrap u]

Var2NDmp(u,source,target is [ndmp,vl,S]) ==
  sym := CADR source
  u = '_$fromCoerceable_$ => member(sym,vl) or canCoerce(source,S)

  len:= #vl
  -1^=(n:= position(u,vl)) =>
    LIST [LIST2VEC [(n=i => 1; 0) for i in 0..len-1],
      :getConstantFromDomain('(One),S)]
  (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure()
  [[Zeros len,:objValUnwrap(u)]]

Var2P(u,source,target is [poly,S]) ==
  sym := CADR source
  u = '_$fromCoerceable_$ => true

  -- first try to get it into an underdomain
  if (S ^= $Integer) then
    u' := coerceInt(objNewWrap(u,source),S)
    if u' then return [0,:objValUnwrap(u')]
  -- if that failed, return it as a polynomial variable
  [1,sym,[1,0,:getConstantFromDomain('(One),S)]]

Var2QF(u,source,target is [qf,S]) ==
  u = '_$fromCoerceable_$ => canCoerce(source,S)

  S = $Integer => coercionFailure()
  sym := CADR source
  (u' := coerceInt(objNewWrap(u,source),S)) or coercionFailure()
  [objValUnwrap u',:getConstantFromDomain('(One),S)]

Var2FS(u,source,target is [fs,S]) ==
  u = '_$fromCoerceable_$ => true
  (v := coerceInt(objNewWrap(u,source),['Polynomial,S])) or
    coercionFailure()
  (v := coerceInt(v,target)) or coercionFailure()
  objValUnwrap v

Var2Up(u,source,target is [up,x,S]) ==
  sym := CADR source
  u = '_$fromCoerceable_$ => (sym = x) or canCoerce(source,S)

  x=sym => [[1,:getConstantFromDomain('(One),S)]]
  (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure()
  [[0,:objValUnwrap u]]

Var2SUP(u,source,target is [sup,S]) ==
  sym := CADR source
  u = '_$fromCoerceable_$ => (sym = "?") or canCoerce(source,S)

  sym = "?" => [[1,:getConstantFromDomain('(One),S)]]
  (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure()
  [[0,:objValUnwrap u]]

Var2UpS(u,source,target is [ups,x,S]) ==
  sym := CADR source
  u = '_$fromCoerceable_$ => (sym = x) or canCoerce(source,S)

  mid := ['UnivariatePolynomial,x,S]
  x = sym =>
    u := Var2Up(u,source,mid)
    (u := coerceInt(objNewWrap(u,mid),target)) or coercionFailure()
    objValUnwrap u
  (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure()
  (u := coerceInt(u,target)) or coercionFailure()
  objValUnwrap u

Var2OtherPS(u,source,target is [.,x,S]) ==
  sym := CADR source
  mid := ['UnivariatePowerSeries,x,S]
  u = '_$fromCoerceable_$ =>
    (sym = x) or (canCoerce(source,mid) and canCoerce(mid,target))
  u := Var2UpS(u,source,mid)
  (u := coerceInt(objNewWrap(u,mid),target)) or coercionFailure()
  objValUnwrap u

--% Vector

V2M(u,[.,D],[.,R]) ==
  u = '_$fromCoerceable_$ =>
    D is ['Vector,:.] => nil  -- don't have data
    canCoerce(D,R)
  -- first see if we are coercing a vector of vectors
  D is ['Vector,E] and
    isRectangularVector(u,MAXINDEX u,MAXINDEX u.0) =>
      LIST2VEC
        [LIST2VEC [objValUnwrap(coerceInt(objNewWrap(x.j,E),R))
           for j in 0..MAXINDEX(x:=u.i)] for i in 0..MAXINDEX u]
  -- if not, try making it into a 1 by n matrix
  coercionFailure()
--LIST2VEC [LIST2VEC [objValUnwrap(coerceInt(objNewWrap(u.i,D),R))
--  for i in 0..MAXINDEX(u)]]

V2Rm(u,[.,D],[.,n,m,R]) ==
  u = '_$fromCoerceable_$ => nil
  D is [.,E,:.] and isRectangularVector(u,n-1,m-1) =>
    LIST2VEC
      [LIST2VEC [objValUnwrap(coerceInt(objNewWrap(x.j,E),R))
         for j in 0..MAXINDEX(x:=u.i)] for i in 0..MAXINDEX u]
  coercionFailure()

V2Sm(u,[.,D],[.,n,R]) ==
  u = '_$fromCoerceable_$ => nil
  D is [.,E,:.] and isRectangularVector(u,n-1,n-1) =>
    LIST2VEC
      [LIST2VEC [objValUnwrap(coerceInt(objNewWrap(x.j,E),R))
         for j in 0..MAXINDEX(x:=u.i)] for i in 0..MAXINDEX u]
  coercionFailure()

isRectangularVector(x,p,q) ==
  MAXINDEX x = p =>
    and/[q=MAXINDEX x.i for i in 0..p]

-- Polynomial and Expression to Univariate series types

P2Uts(u, source, target) ==
  P2Us(u,source, target, 'taylor)

P2Uls(u, source, target) ==
  P2Us(u,source, target, 'laurent)

P2Upxs(u, source, target) ==
  P2Us(u,source, target, 'puiseux)

P2Us(u, source is [.,S], target is [.,T,var,cen], type) ==
  u = '_$fromCoerceable_$ =>
    -- might be able to say yes
    canCoerce(S,T)
  T isnt ['Expression, :.] => coercionFailure()
  if S ^= '(Float) then S := $Integer
  obj := objNewWrap(u, source)
  E := ['Expression, S]
  newU := coerceInt(obj, E)
  null newU => coercionFailure()
  EQtype := ['Equation, E]
  eqfun := getFunctionFromDomain('_=, EQtype, [E,E])
  varE := coerceInt(objNewWrap(var, '(Symbol)), E)
  null varE => coercionFailure()
  cenE := coerceInt(objNewWrap(cen, T), E)
  null cenE => coercionFailure()
  eq := SPADCALL(objValUnwrap(varE), objValUnwrap(cenE), eqfun)
  package := ['ExpressionToUnivariatePowerSeries, S, E]
  func := getFunctionFromDomain(type, package, [E, EQtype])
  newObj := SPADCALL(objValUnwrap(newU), eq, func)
  newType := CAR newObj
  newVal  := CDR newObj
  newType = target => newVal
  finalObj := coerceInt(objNewWrap(newVal, newType), target)
  null finalObj => coercionFailure()
  objValUnwrap finalObj


--% General Coercion Commutation Functions

-- general commutation functions are called with 5 values
--     u           object of type source
--     source      type of u
--     S           underdomain of source
--     target      coercion target type
--     T           underdomain of T
-- Because of checking, can always assume S and T have underdomains.

--% Complex

commuteComplex(u,source,S,target,T) ==
  u = '_$fromCoerceable_$ =>
    canCoerce(S,target) and canCoerce(T,target)
  [real,:imag] := u
  (real := coerceInt(objNewWrap(real,S),target)) or coercionFailure()
  (imag := coerceInt(objNewWrap(imag,S),target)) or coercionFailure()
  T' := underDomainOf T
  i := [domainZero(T'),
       :domainOne(T')]
  (i := coerceInt(objNewWrap(i,T),target)) or coercionFailure()
  f := getFunctionFromDomain("*",target,[target,target])
  i := SPADCALL(objValUnwrap i, objValUnwrap imag, f)
  f := getFunctionFromDomain("+",target,[target,target])
  SPADCALL(objValUnwrap real,i,f)

--% Quaternion

commuteQuaternion(u,source,S,target,T) ==
  u = '_$fromCoerceable_$ =>
    canCoerce(S,target) and canCoerce(T,target)
  c := [objValUnwrap(coerceInt(objNewWrap(x,S),target)
    or coercionFailure()) for x in VEC2LIST u]
  q := '(Quaternion (Integer))
  e := [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
  e := [(coerceInt(objNewWrap(LIST2VEC x,q),T)
    or coercionFailure()) for x in e]
  e :=[objValUnwrap(coerceInt(x,target) or coercionFailure()) for x in e]
  u' := domainZero(target)
  mult := getFunctionFromDomain("*",target,[target,target])
  plus := getFunctionFromDomain("+",target,[target,target])
  for x in c for y in e repeat
    u' := SPADCALL(u',SPADCALL(x,y,mult),plus)
  u'

--% Fraction

commuteFraction(u,source,S,target,T) ==
  u = '_$fromCoerceable_$ =>
    ofCategory(target,'(Field)) => canCoerce(S,target)
    canCoerce(S,T) and canCoerce(T,target)
  [n,:d] := u
  ofCategory(target,'(Field)) =>
    -- see if denominator can go over to target
    (d' := coerceInt(objNewWrap(d,S),target)) or coercionFailure()
    -- if so, try to invert it
    inv := getFunctionFromDomain('inv,target,[target])
    d' := SPADCALL(objValUnwrap d',inv)
    -- now coerce to target
    (n' := coerceInt(objNewWrap(n,S),target)) or coercionFailure()
    multfunc := getFunctionFromDomain("*",target,[target,target])
    SPADCALL(d',objValUnwrap n',multfunc)
  -- see if denominator can go over to QF part of target
  (d' := coerceInt(objNewWrap(d,S),T)) or coercionFailure()
  -- if so, try to invert it
  inv := getFunctionFromDomain('inv,T,[T])
  d' := SPADCALL(objValUnwrap d',inv)
  -- now coerce to target
  (d' := coerceInt(objNewWrap(d',T),target)) or coercionFailure()
  (n' := coerceInt(objNewWrap(n,S),target)) or coercionFailure()
  multfunc := getFunctionFromDomain("*",target,[target,target])
  SPADCALL(objValUnwrap d',objValUnwrap n',multfunc)

--% SquareMatrix

commuteSquareMatrix(u,source,S,target,T) ==
  u = '_$fromCoerceable_$ =>
    canCoerce(S,target) and canCoerce(T,target)
  -- commuting matrices of matrices should be a no-op
  S is ['SquareMatrix,:.] =>
     source=target => u
     coercionFailure()
  u' := domainZero(target)
  plusfunc := getFunctionFromDomain("+",target,[target,target])
  multfunc := getFunctionFromDomain("*",target,[target,target])
  zero := domainZero(S)
  [sm,n,:.] := source
  S' := [sm,n,$Integer]
  for i in 0..(n-1) repeat
    for j in 0..(n-1) repeat
      (e := u.i.j) = zero => 'iterate
      (e' := coerceInt(objNewWrap(e,S),target)) or coercionFailure()
      (Eij := coerceInt(objNewWrap(makeEijSquareMatrix(i,j,n),S'),T)) or
        coercionFailure()
      (Eij := coerceInt(Eij,target)) or coercionFailure()
      e' := SPADCALL(objValUnwrap(e'),objValUnwrap(Eij),multfunc)
      u' := SPADCALL(e',u',plusfunc)
  u'

makeEijSquareMatrix(i, j, dim) ==
  -- assume using 0 based scale, makes a dim by dim matrix with a
  -- 1 in the i,j position, zeros elsewhere
  LIST2VEC [LIST2VEC [((i=r) and (j=c) => 1; 0)
    for c in 0..(dim-1)] for r in 0..(dim-1)]

--% Univariate Polynomial and Sparse Univariate Polynomial

commuteUnivariatePolynomial(u,source,S,target,T) ==
  commuteSparseUnivariatePolynomial(u,source,S,target,T)

commuteSparseUnivariatePolynomial(u,source,S,target,T) ==
  u = '_$fromCoerceable_$ =>
    canCoerce(S,target) and canCoerce(T,target)

  u' := domainZero(target)
  null u => u'

  T'  := underDomainOf T
  one := domainOne(T')
  monom := getFunctionFromDomain('monomial,T,[T',$NonNegativeInteger])
  plus  := getFunctionFromDomain("+",target,[target,target])
  times := getFunctionFromDomain("*",target,[target,target])

  for [e,:c] in u repeat
    (c := coerceInt(objNewWrap(c,S),target)) or coercionFailure()
    m := SPADCALL(one,e,monom)
    (m := coerceInt(objNewWrap(m,T),target)) or coercionFailure()
    c := objValUnwrap c
    m := objValUnwrap m
    u' := SPADCALL(u',SPADCALL(c,m,times),plus)
  u'

--% Multivariate Polynomials

commutePolynomial(u,source,S,target,T) ==
  commuteMPolyCat(u,source,S,target,T)

commuteMultivariatePolynomial(u,source,S,target,T) ==
  commuteMPolyCat(u,source,S,target,T)

commuteDistributedMultivariatePolynomial(u,source,S,target,T) ==
  commuteMPolyCat(u,source,S,target,T)

commuteNewDistributedMultivariatePolynomial(u,source,S,target,T) ==
  commuteMPolyCat(u,source,S,target,T)

commuteMPolyCat(u,source,S,target,T) ==
  u = '_$fromCoerceable_$ => canCoerce(S,target)
  -- check constant case
  isconstfun := getFunctionFromDomain("ground?",source,[source])
  SPADCALL(u,isconstfun) =>
    constfun := getFunctionFromDomain("ground",source,[source])
    c := SPADCALL(u,constfun)
    (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure()
    objValUnwrap(u')

  lmfun := getFunctionFromDomain('leadingMonomial,source,[source])
  lm := SPADCALL(u,lmfun)    -- has type source, is leading monom

  lcfun := getFunctionFromDomain('leadingCoefficient,source,[source])
  lc := SPADCALL(lm,lcfun)    -- has type S, is leading coef
  (lc' := coerceInt(objNewWrap(lc,S),target)) or coercionFailure()

  pmfun := getFunctionFromDomain('primitiveMonomials,source,[source])
  lm := first SPADCALL(lm,pmfun) -- now we have removed the leading coef
  (lm' := coerceInt(objNewWrap(lm,source),T)) or coercionFailure()
  (lm' := coerceInt(lm',target)) or coercionFailure()

  rdfun := getFunctionFromDomain('reductum,source,[source])
  rd := SPADCALL(u,rdfun)    -- has type source, is reductum
  (rd' := coerceInt(objNewWrap(rd,source),target)) or coercionFailure()

  lc' := objValUnwrap lc'
  lm' := objValUnwrap lm'
  rd' := objValUnwrap rd'

  plusfun := getFunctionFromDomain("+",target,[target,target])
  multfun := getFunctionFromDomain("*",target,[target,target])
  SPADCALL(SPADCALL(lc',lm',multfun),rd',plusfun)

------------------------------------------------------------------------
-- Format for alist member is:  domain  coercionType function
--   here coercionType can be one of 'total, 'partial or 'indeterm
--   (indeterminant - cannot tell in a simple way).
--
-- In terms of canCoerceFrom, 'total implies true, 'partial implies
--   false (just cannot tell without actual data) and 'indeterm means
--   to call the function with the data = "$fromCoerceable$" for a
--   response of true or false.
------------------------------------------------------------------------
-- There are no entries here for RationalNumber or RationalFunction.
-- These should have been changed to QF I and QF P, respectively, by
-- a function like deconstructTower.  RSS 8-1-85
------------------------------------------------------------------------

SETANDFILEQ($CoerceTable, '(                                          _
  (Complex . ( _
    (Expression                       indeterm   Complex2Expr) _
    (Factored                         indeterm   Complex2FR) _
    (Integer                          partial    Complex2underDomain) _
    (PrimeField                       partial    Complex2underDomain) _
    ))_
  (DirectProduct . (                                                  _
    (DirectProduct                        partial    DP2DP)           _
   ))                                                                 _
  (DistributedMultivariatePolynomial . (                              _
    (DistributedMultivariatePolynomial    indeterm   Dmp2Dmp) _
    (Expression                           indeterm   Dmp2Expr) _
    (Factored                             indeterm   Mp2FR) _
    (HomogeneousDistributedMultivariatePolynomial indeterm   Dmp2NDmp) _
    (MultivariatePolynomial               indeterm   Dmp2Mp) _
    (Polynomial                           indeterm   Dmp2P) _
    (UnivariatePolynomial                 indeterm   Dmp2Up) _
    ))_
  (Expression . (
    (Complex                                         partial    Expr2Complex) _
    (DistributedMultivariatePolynomial               indeterm   Expr2Dmp) _
    (HomogeneousDistributedMultivariatePolynomial    indeterm   Expr2Dmp) _
    (MultivariatePolynomial                          indeterm   Expr2Mp) _
    (UnivariateLaurentSeries                         indeterm   P2Uls) _
    (UnivariatePolynomial                            indeterm   Expr2Up) _
    (UnivariatePuiseuxSeries                         indeterm   P2Upxs) _
    (UnivariateTaylorSeries                          indeterm   P2Uts) _
    )) _

  (Kernel . ( _
    (Kernel                                          indeterm   Ker2Ker) _
    (Expression                                      indeterm   Ker2Expr) _
     )) _

  (Factored . ( _
    (Factored                             indeterm   Factored2Factored) _
    ))_
  (Fraction . ( _
    (DistributedMultivariatePolynomial    partial    Qf2domain) _
    (ElementaryFunction                   indeterm   Qf2EF) _
    (Expression                           indeterm   Qf2EF) _
    (Fraction                             indeterm   Qf2Qf) _
    (HomogeneousDistributedMultivariatePolynomial partial    Qf2domain) _
    (Integer                              partial    Qf2domain) _
    (MultivariatePolynomial               partial    Qf2domain) _
    (Polynomial                           partial    Qf2domain) _
    (PrimeField                           indeterm   Qf2PF) _
    (UnivariateLaurentSeries              indeterm   P2Uls) _
    (UnivariatePolynomial                 partial    Qf2domain) _
    (UnivariatePuiseuxSeries              indeterm   P2Upxs) _
    (UnivariateTaylorSeries               indeterm   P2Uts) _
    ))_
  (Int . ( _
    (Expression                           total      ncI2E) _
    (Integer                              total      ncI2I) _
  ))_
  (Baby . ( _
    (Expression                           total      ncI2E) _
    (Integer                              total      ncI2I) _
  ))_
  (Integer . ( _
    (Baby                                 total      I2ncI) _
    (EvenInteger                          partial    I2EI) _
    (Int                                  total      I2ncI) _
    (NonNegativeInteger                   partial    I2NNI) _
    (OddInteger                           partial    I2OI) _
    (PositiveInteger                      partial    I2PI) _
    ))_
  (List . ( _
    (DirectProduct                        indeterm   L2DP) _
    (Matrix                               partial    L2M) _
    (Record                               partial    L2Record) _
    (RectangularMatrix                    partial    L2Rm) _
    (Set                                  indeterm   L2Set) _
    (SquareMatrix                         partial    L2Sm) _
    (Stream                               indeterm   Agg2Agg) _
    (Tuple                                indeterm   L2Tuple) _
    (Vector                               indeterm   L2V) _
    ))_
  ))

SETANDFILEQ($CoerceTable,NCONC($CoerceTable,'( _
  (Matrix . ( _
    (List                                 indeterm   M2L) _
    (RectangularMatrix                    partial    M2Rm) _
    (SquareMatrix                         partial    M2Sm) _
    (Vector                               indeterm   M2L) _
    ))_
  (MultivariatePolynomial . ( _
    (DistributedMultivariatePolynomial    indeterm   Mp2Dmp) _
    (Expression                           indeterm   Mp2Expr) _
    (Factored                             indeterm   Mp2FR) _
    (HomogeneousDistributedMultivariatePolynomial indeterm   domain2NDmp) _
    (MultivariatePolynomial               indeterm   Mp2Mp) _
    (Polynomial                           indeterm   Mp2P) _
    (UnivariatePolynomial                 indeterm   Mp2Up) _
    ))_
  (HomogeneousDirectProduct . ( _
    (HomogeneousDirectProduct             indeterm   DP2DP) _
   ))_
  (HomogeneousDistributedMultivariatePolynomial . ( _
    (Complex                              indeterm   NDmp2domain) _
    (DistributedMultivariatePolynomial    indeterm   NDmp2domain) _
    (Expression                           indeterm   Dmp2Expr) _
    (Factored                             indeterm   Mp2FR) _
    (Fraction                             indeterm   NDmp2domain) _
    (HomogeneousDistributedMultivariatePolynomial indeterm   NDmp2NDmp) _
    (MultivariatePolynomial               indeterm   NDmp2domain) _
    (Polynomial                           indeterm   NDmp2domain) _
    (Quaternion                           indeterm   NDmp2domain) _
    (UnivariatePolynomial                 indeterm   NDmp2domain) _
    ))_
  (OrderedVariableList . ( _
    (DistributedMultivariatePolynomial    indeterm   OV2poly) _
    (HomogeneousDistributedMultivariatePolynomial indeterm   OV2poly) _
    (MultivariatePolynomial               indeterm   OV2poly) _
    (OrderedVariableList                  indeterm   OV2OV) _
    (Polynomial                           total      OV2P) _
    (Symbol                               total      OV2Sy) _
    (UnivariatePolynomial                 indeterm   OV2poly) _
    ))_
  (Polynomial . ( _
    (DistributedMultivariatePolynomial    indeterm   P2Dmp) _
    (Expression                           indeterm   P2Expr) _
    (Factored                             indeterm   P2FR) _
    (HomogeneousDistributedMultivariatePolynomial partial    domain2NDmp) _
    (MultivariatePolynomial               indeterm   P2Mp) _
    (UnivariateLaurentSeries              indeterm   P2Uls) _
    (UnivariatePolynomial                 indeterm   P2Up) _
    (UnivariatePuiseuxSeries              indeterm   P2Upxs) _
    (UnivariateTaylorSeries               indeterm   P2Uts) _
    ))_
  (Set . ( _
    (List                                 indeterm   Set2L) _
    (Vector                               indeterm   Agg2L2Agg) _
    ))_
  (RectangularMatrix . ( _
    (List                                 indeterm   Rm2L) _
    (Matrix                               indeterm   Rm2M) _
    (SquareMatrix                         indeterm   Rm2Sm) _
    (Vector                               indeterm   Rm2V) _
    ))_
  (SparseUnivariatePolynomial . ( _
    (UnivariatePolynomial                       indeterm   SUP2Up) _
    ))_
  (SquareMatrix . (
    -- ones for polys needed for M[2] P I -> P[x,y] M[2] P I, say
    (DistributedMultivariatePolynomial            partial    Sm2PolyType) _
    (HomogeneousDistributedMultivariatePolynomial partial    Sm2PolyType) _
    (List                                         indeterm   Sm2L) _
    (Matrix                                       indeterm   Sm2M) _
    (MultivariatePolynomial                       partial    Sm2PolyType) _
    (RectangularMatrix                            indeterm   Sm2Rm) _
    (UnivariatePolynomial                         indeterm   Sm2PolyType) _
    (Vector                                       indeterm   Sm2V) _
    ) ) _
  (Symbol . ( _
    (DistributedMultivariatePolynomial            indeterm   Sy2Dmp) _
    (HomogeneousDistributedMultivariatePolynomial indeterm   Sy2NDmp) _
    (MultivariatePolynomial                       indeterm   Sy2Mp) _
    (OrderedVariableList                          partial    Sy2OV) _
    (Polynomial                                   total      Sy2P) _
    (UnivariatePolynomial                         indeterm   Sy2Up) _
    (Variable                                     indeterm   Sy2Var) _
    ) ) _
  (UnivariatePolynomial . ( _
    (DistributedMultivariatePolynomial            indeterm   Up2Dmp) _
    (Expression                                   indeterm   Up2Expr) _
    (Factored                                     indeterm   Up2FR) _
    (HomogeneousDistributedMultivariatePolynomial indeterm   domain2NDmp) _
    (MultivariatePolynomial                       indeterm   Up2Mp) _
    (Polynomial                                   indeterm   Up2P) _
    (SparseUnivariatePolynomial                   indeterm   Up2SUP) _
    (UnivariatePolynomial                         indeterm   Up2Up) _
    ) ) _
  (Variable . ( _
    (AlgebraicFunction                            total      Var2FS) _
    (ContinuedFractionPowerSeries                 indeterm   Var2OtherPS) _
    (DistributedMultivariatePolynomial            indeterm   Var2Dmp) _
    (ElementaryFunction                           total      Var2FS) _
    (Fraction                                     indeterm   Var2QF) _
    (FunctionalExpression                         total      Var2FS) _
    (GeneralDistributedMultivariatePolynomial     indeterm   Var2Gdmp) _
    (HomogeneousDistributedMultivariatePolynomial indeterm   Var2NDmp) _
    (LiouvillianFunction                          total      Var2FS) _
    (MultivariatePolynomial                       indeterm   Var2Mp) _
    (OrderedVariableList                          indeterm   Var2OV) _
    (Polynomial                                   total      Var2P) _
    (SparseUnivariatePolynomial                   indeterm   Var2SUP) _
    (Symbol                                       total      Identity) _
    (UnivariatePolynomial                         indeterm   Var2Up) _
    (UnivariatePowerSeries                        indeterm   Var2UpS) _
    ) ) _
  (Vector . ( _
    (DirectProduct                        indeterm   V2DP) _
    (List                                 indeterm   V2L) _
    (Matrix                               indeterm   V2M) _
    (RectangularMatrix                    indeterm   V2Rm) _
    (Set                                  indeterm   Agg2L2Agg) _
    (SquareMatrix                         indeterm   V2Sm) _
    (Stream                               indeterm   Agg2Agg) _
    ) ) _
  ) ) )

-- this list is too long for the parser, so it has to be split into parts
-- specifies the commute functions
-- commute stands for partial commute function
--SETANDFILEQ($CommuteTable, '(                                           _
--  (DistributedMultivariatePolynomial . (                                _
--    (DistributedMultivariatePolynomial    commute    commuteMultPol)    _
--    (Complex                              commute    commuteMultPol)    _
--    (MultivariatePolynomial               commute    commuteMultPol)    _
--    (NewDistributedMultivariatePolynomial commute    commuteMultPol)    _
--    (Polynomial                           commute    commuteMultPol)    _
--    (Quaternion                           commute    commuteMultPol)    _
--    (Fraction                             commute    commuteMultPol)    _
--    (SquareMatrix                         commute    commuteMultPol)    _
--    (UnivariatePolynomial                 commute    commuteMultPol)    _
--    ))                                                                  _
--  (Complex . (                                                         _
--    (DistributedMultivariatePolynomial    commute    commuteG2)         _
--    (MultivariatePolynomial               commute    commuteG2)         _
--    (NewDistributedMultivariatePolynomial commute    commuteG2)         _
--    (Polynomial                           commute    commuteG1)         _
--    (Fraction                             commute    commuteG1)         _
--    (SquareMatrix                         commute    commuteG2)         _
--    (UnivariatePolynomial                 commute    commuteG2)         _
--    ))                                                                  _
--  (MultivariatePolynomial . (                                           _
--    (DistributedMultivariatePolynomial    commute    commuteMultPol)    _
--    (Complex                             commute    commuteMultPol)    _
--    (MultivariatePolynomial               commute    commuteMultPol)    _
--    (NewDistributedMultivariatePolynomial commute    commuteMultPol)    _
--    (Polynomial                           commute    commuteMultPol)    _
--    (Quaternion                           commute    commuteMultPol)    _
--    (Fraction                        commute    commuteMultPol)    _
--    (SquareMatrix                         commute    commuteMultPol)    _
--    (UnivariatePolynomial                       commute    commuteMultPol)    _
--    ))                                                                  _
--  (Polynomial . (                                                       _
--    (DistributedMultivariatePolynomial    commute    commuteMultPol)    _
--    (Complex                              commute    commuteMultPol)    _
--    (MultivariatePolynomial               commute    commuteMultPol)    _
--    (NewDistributedMultivariatePolynomial commute    commuteMultPol)    _
--    (Polynomial                           commute    commuteMultPol)    _
--    (Quaternion                           commute    commuteMultPol)    _
--    (Fraction                             commute    commuteMultPol)    _
--    (SquareMatrix                         commute    commuteMultPol)    _
--    (UnivariatePolynomial                 commute    commuteMultPol)    _
--    ))                                                                  _
--  (Quaternion . (                                                       _
--    (DistributedMultivariatePolynomial    commute    commuteQuat2)      _
--    (MultivariatePolynomial               commute    commuteQuat2)      _
--    (NewDistributedMultivariatePolynomial commute    commuteQuat2)      _
--    (Polynomial                           commute    commuteQuat1)      _
--    (SquareMatrix                         commute    commuteQuat2)      _
--    (UnivariatePolynomial                       commute    commuteQuat2)      _
--    ))                                                                  _
--  (SquareMatrix . (                                                     _
--    (DistributedMultivariatePolynomial    commute    commuteSm2)        _
--    (Complex                             commute    commuteSm1)        _
--    (MultivariatePolynomial               commute    commuteSm2)        _
--    (NewDistributedMultivariatePolynomial commute    commuteSm2)        _
--    (Polynomial                           commute    commuteSm1)        _
--    (Quaternion                           commute    commuteSm1)        _
--    (SparseUnivariatePolynomial           commute    commuteSm1)        _
--    (UnivariatePolynomial                 commute    commuteSm2)        _
--    ))                                                                  _
--  (UnivariatePolynomial . (                                                   _
--    (DistributedMultivariatePolynomial    commute    commuteUp2)        _
--    (Complex                              commute    commuteUp1)        _
--    (MultivariatePolynomial               commute    commuteUp2)        _
--    (NewDistributedMultivariatePolynomial commute    commuteUp2)        _
--    (Polynomial                           commute    commuteUp1)        _
--    (Quaternion                           commute    commuteUp1)        _
--    (Fraction                        commute    commuteUp1)        _
--    (SparseUnivariatePolynomial           commute    commuteUp1)        _
--    (SquareMatrix                         commute    commuteUp2)        _
--    (UnivariatePolynomial                 commute    commuteUp2)        _
--    ))                                                                  _
--  ))

SETANDFILEQ($CommuteTable, '(                                           _
  (Complex . (                                                         _
    (DistributedMultivariatePolynomial    commute    commuteG2)         _
    (MultivariatePolynomial               commute    commuteG2)         _
    (HomogeneousDistributedMultivariatePolynomial commute    commuteG2) _
    (Polynomial                           commute    commuteG1)         _
    (Fraction                             commute    commuteG1)         _
    (SquareMatrix                         commute    commuteG2)         _
    (UnivariatePolynomial                 commute    commuteG2)         _
    ))                                                                  _
  (Polynomial . (                                                       _
    (Complex                              commute    commuteMultPol)    _
    (MultivariatePolynomial               commute    commuteMultPol)    _
    (HomogeneousDistributedMultivariatePolynomial commute    commuteMultPol)_
    (Polynomial                           commute    commuteMultPol)    _
    (Quaternion                           commute    commuteMultPol)    _
    (Fraction                             commute    commuteMultPol)    _
    (SquareMatrix                         commute    commuteMultPol)    _
    (UnivariatePolynomial                 commute    commuteMultPol)    _
    ))                                                                  _
  (SquareMatrix . (                                                     _
    (DistributedMultivariatePolynomial    commute    commuteSm2)        _
    (Complex                              commute    commuteSm1)        _
    (MultivariatePolynomial               commute    commuteSm2)        _
    (HomogeneousDistributedMultivariatePolynomial commute    commuteSm2)_
    (Polynomial                           commute    commuteSm1)        _
    (Quaternion                           commute    commuteSm1)        _
    (SparseUnivariatePolynomial           commute    commuteSm1)        _
    (UnivariatePolynomial                 commute    commuteSm2)        _
    ))                                                                  _
  ))