1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
|
-- Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd.
-- All rights reserved.
-- Copyright (C) 2007-2011, Gabriel Dos Reis.
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical Algorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import sys_-macros
namespace BOOT
--%
$nagMessages := nil
makeVector(elts, t) ==
MAKE_-ARRAY(#elts, KEYWORD::ELEMENT_-TYPE, t or true,
KEYWORD::INITIAL_-CONTENTS, elts)
makeList(n, e) ==
MAKE_-LIST(n, KEYWORD::INITIAL_-ELEMENT, e)
makeFort(name,args,decls,results,returnType,aspInfo) ==
-- Create an executable Fortran file to call a given library function,
-- and a stub Axiom function to process its arguments.
-- the following is a list of objects for which values need not be
-- passed by the user.
dummies := [second(u) for u in args | first u = 0]
args := [untangle2(u) for u in args] -- lose spad Union representation
where untangle2 u ==
atom (v := rest(u)) => v
first(v)
userArgs := [u for u in args | not member(u,dummies)] -- Temporary
decls := [untangle(u) for u in decls] -- lose spad Union representation
where untangle u ==
[if atom(rest(v)) then rest(v) else _
[if atom(w) then w else rest(w) for w in rest(v)] for v in u]
makeFort1(name,args,userArgs,dummies,decls,results,returnType,aspInfo)
makeFort1(name,args,userArgs,dummies,decls,results,returnType,aspInfo) ==
asps := [first(u) for u in aspInfo]
-- Now reorder the arguments so that all the scalars come first, so
-- that when we come to deal with arrays we know all the dimensions.
scalarArgs := [u for u in args | atom getFortranType(u,decls)]
arrayArgs := [u for u in args | not member(u,scalarArgs)]
orderedArgs := [:scalarArgs,:arrayArgs]
file := if $fortranDirectory then
strconc($fortranDirectory,'"/",STRINGIMAGE name)
else
STRINGIMAGE name
makeFortranFun(name,orderedArgs,args,dummies,decls,results,file,
$fortranDirectory,returnType,asps)
makeSpadFun(name,userArgs,orderedArgs,dummies,decls,results,returnType,asps,
aspInfo,file)
name
makeFortranFun(name,args,fortranArgs,dummies,decls,results,file,dir,
returnType,asps) ==
-- Create a C file to call the library function, and compile it.
fp := MAKE_-OUTSTREAM(strconc(file,'".c"))
writeCFile(name,args,fortranArgs,dummies,decls,results,returnType,asps,fp)
if null dir then dir := '"."
asps => SYSTEM strconc('"cc -c ",file,'".c ; mv ",file,'".o ",dir)
SYSTEM strconc('"cc ",file,'".c -o ",file,'".spadexe ",$fortranLibraries)
writeCFile(name,args,fortranArgs,dummies,decls,results,returnType,asps,fp) ==
writeLine('"#include <stdio.h>",fp)
writeLine('"#include <sys/select.h>",fp)
writeLine('"#include <rpc/rpc.h>",fp)
writeLine('"#ifndef NULL",fp)
writeLine('"#define NULL 0",fp)
writeLine('"#endif NULL",fp)
writeLine('"#define MAX__ARRAY(x) (x ? x : 20000)",fp)
writeLine('"#define CHECK(x) if (!x) {fprintf(stderr,_"xdr failed_"); exit(1);}",fp)
writeLine('"void main()",fp)
writeLine('"{",fp)
writeLine('" XDR xdrs;",fp)
writeLine('" {",fp)
if $addUnderscoreToFortranNames then
routineName := strconc(name,charString abstractChar 95)
else
routineName := name
-- If it is a function then give it somewhere to stick its result:
if returnType then
returnName := makeSymbol strconc(name,'"__result")
wl(['" ",getCType returnType,'" ",returnName,'",",routineName,'"();"],fp)
-- print out type declarations for the Fortran parameters, and build an
-- ordered list of pairs [<parameter> , <type>]
argList := nil
for a in args repeat
argList := [[a, getCType getFortranType(a,decls)], :argList]
printDec(second first argList,a,asps,fp)
argList := reverse! argList;
-- read in the data
writeLine('" xdrstdio__create(&xdrs, stdin, XDR__DECODE);",fp)
for a in argList repeat
if LISTP second a then writeMalloc(first a,first second a,rest second a,fp)
not symbolMember?(first a,[:dummies,:asps]) => writeXDR(a,'"&xdrs",fp)
-- now call the Library routine. FORTRAN names may have an underscore
-- appended.
if returnType then
wt(['" ",returnName,'"="],fp)
else
wt(['" "],fp)
wt([routineName,'"("],fp)
if first fortranArgs then
printCName(first fortranArgs,isPointer?(first fortranArgs,decls),asps,fp)
for a in rest fortranArgs repeat
PRINC('",",fp)
printCName(a,isPointer?(a,decls),asps,fp)
writeStringLengths(fortranArgs,decls,fp)
writeLine('");",fp)
-- now export the results.
writeLine('" xdrstdio__create(&xdrs, stdout, XDR__ENCODE);",fp)
if returnType then
writeXDR([returnName,getCType returnType],'"&xdrs",fp)
for r in results repeat
writeXDR([r,getCType getFortranType(r,decls)],'"&xdrs",fp)
writeLine('" exit(0);",fp)
writeLine('" }",fp)
writeLine('"}",fp)
writeStringLengths(fortranArgs,decls,fp) ==
for a in fortranArgs repeat
if isString?(a,decls) then wt(['",&",a,'"__length"],fp)
isString?(u,decls) ==
(ty := getFortranType(u,decls)) = "character" or
LISTP(ty) and first ty = "character"
isPointer?(u,decls) ==
ty := getFortranType(u,decls)
LISTP(ty) or ty in ["character","complex","double complex"]
printCName(u,ispointer,asps,fp) ==
member(u,asps) =>
PRINC(u,fp)
if $addUnderscoreToFortranNames then PRINC(charString abstractChar 95,fp)
if not ispointer then PRINC('"&",fp)
PRINC(u,fp)
getFortranType(u,decls) ==
-- find u in decls, return the given (Fortran) type.
result := nil
for d in decls repeat for dec in rest d repeat
atom(dec) and dec=u =>
return( result := first d )
LISTP(dec) and first(dec)=u =>
return( result := [first d,:rest dec] )
result => result
error ['"Undeclared Fortran parameter: ",u]
getCType t ==
-- Return the equivalent C type.
LISTP(t) =>
--[if first(t)="character" then '"char" else getCType first t,:rest t]
first(t)="character" => ['"char",:rest t]
first(t)="complex" => ['"float",2,:rest t]
first(t)="double complex" => ['"double",2,:rest t]
[getCType first t,:rest t]
t="double" => '"double"
t="double precision" => '"double"
t="integer" => '"int"
t="real" => '"float"
t="logical" => '"int"
t="character" => ['"char",1]
t="complex" => ['"float",2] --'"Complex" -- we use our own typedef
t="double complex" => ['"double",2] --'"DComplex" -- we use our own typedef
error ['"Unrecognised Fortran type: ",t]
XDRFun t ==
LISTP(ty := second t) =>
if first(ty) is '"char" then '"wrapstring" else '"array"
ty
printDec(type,dec,asps,fp) ==
wt(['" ",if LISTP(type) then first(type) else type,'" "],fp)
member(dec,asps) =>
if $addUnderscoreToFortranNames then
wl([dec,charString abstractChar 95,'"();"],fp)
else
wl([dec,'"();"],fp)
LISTP(type) =>
wl(['"*",dec,'" = NULL;"],fp)
wl(['" u__int ",dec, '"__length = 0;"],fp)
type = '"char" =>
wl(['"*",dec,'" = NULL;"],fp)
wl([dec, '";"],fp)
writeXDR(v,str,fp) ==
-- Generate the calls to the filters which will read from the temp
-- file. The CHECK macro ensures that the translation worked.
underscore := '"__"
wt(['" CHECK(xdr",underscore, XDRFun(v), '"(", str, '",&", first(v)],fp)
if (LISTP (ty :=second v)) and first ty ~= '"char" then
wt(['",&",first(v),'"__length,MAX__ARRAY(",first(v),'"__length),"],fp)
wt(['"sizeof(",first(ty),'"),xdr",underscore,first ty],fp)
wl(['"));"],fp)
prefix2Infix(l) ==
atom(l) => [l]
#l=2 => [first l,"(",:prefix2Infix second l,")"]
#l=3 => ["(",:prefix2Infix second l,first l,:prefix2Infix third l,")"]
error '"Function in array dimensions with more than two arguments"
writeMalloc(name,type,dims,fp) ==
-- Write out a malloc for array arguments
-- Need the size as well
wl(['" ",name,'"__length=",prefix2Infix first dims,:[:["*",:prefix2Infix u]
for u in rest dims],'";"], fp)
type = '"char" =>
wl(['" ",name,'"=(",type," *)malloc((1+",name,
'"__length)*sizeof(",type,'"));"],fp)
wl(['" ",name,'"=(",type," *)malloc(",name,
'"__length*sizeof(",type,'"));"],fp)
wl (l,fp) ==
for u in l repeat PRINC(u,fp)
TERPRI(fp)
wt (l,fp) ==
for u in l repeat PRINC(u,fp)
-- spadRecordType(v,decs) ==
-- -- Build a lisp representation of the declaration of a spad record.
-- -- This will be the returned type of the spad function which calls the
-- -- Fortran code.
-- ["Record",:[spadRecordType1(u,decs) for u in v]]
--
-- spadRecordType1(u,decls) ==
-- -- Create a list of the form '( |:| u <spadTypeTTT u>)
-- [":",u,spadTypeTTT getFortranType(u,decls)]
spadTypeTTT u ==
-- Return the spad domain equivalent to the given Fortran type.
-- Changed by MCD 8/4/94 to reflect correct format for domains in
-- current system.
LISTP u =>
first(u)="character" => ["String"]
first(u)="logical" and #u=2 => ["List",["Boolean"]]
first(u)="logical" => ["List",["List",["Boolean"]]]
#u=2 => ["Matrix",spadTypeTTT first u]
#u=3 => ["Matrix",spadTypeTTT first u]
#u=4 => ["ThreeDimensionalMatrix",spadTypeTTT first u]
error '"Can only handle one-, two- and three-dimensional matrices"
u = "double" => ["DoubleFloat"]
u = "double precision" => ["DoubleFloat"]
u = "real" => ["DoubleFloat"]
u = "integer" => ["Integer"]
u = "logical" => ["Boolean"]
u = "character" => ["String"]
u = "complex" => ["Complex",["DoubleFloat"]]
u = "double complex" => ["Complex",["DoubleFloat"]]
error ['"Unrecognised Fortran type: ",u]
mkQuote l ==
[addQuote(u)for u in l] where
addQuote u ==
atom u => ['QUOTE,u]
["construct",:[addQuote(v) for v in u]]
makeLispList(l) ==
outputList := []
for u in l repeat
outputList := [:outputList, _
if atom(u) then ['QUOTE,u] else [["$elt","Lisp","construct"],_
:makeLispList(u)]]
outputList
makeSpadFun(name,userArgs,args,dummies,decls,results,returnType,asps,aspInfo,
file) ==
-- Create an interpreter function for the user to call.
fType := ["List", ["Record" , [":","key","Symbol"], [":","entry","Any"]]]
-- To make sure the spad interpreter isn't confused:
if returnType then
returnName := makeSymbol strconc(name,'"Result")
decls := [[returnType,returnName], :decls]
results := [returnName, :results]
argNames := [makeSymbol strconc(STRINGIMAGE(u),'"__arg") for u in userArgs]
aType := [axiomType(a,decls,asps,aspInfo) for a in userArgs]
aspTypes := [second NTH(POSITION(u,userArgs),aType) for u in asps]
nilLst := MAKE_-LIST(#args+1)
decPar := [["$elt","Lisp","construct"],:makeLispList decls]
fargNames := [makeSymbol strconc(STRINGIMAGE(u),'"__arg") for u in args |
not (symbolMember?(u,dummies) or symbolMember?(u,asps)) ]
for u in asps repeat
fargNames := removeSymbol(fargNames,makeSymbol strconc(STRINGIMAGE(u),'"__arg"))
resPar := ["construct",["@",["construct",:fargNames],_
["List",["Any"]]]]
call := [["$elt","Lisp","invokeFortran"],strconc(file,'".spadexe"),_
[["$elt","Lisp","construct"],:mkQuote args],_
[["$elt","Lisp","construct"],:mkQuote union(asps,dummies)], decPar,_
[["$elt","Lisp","construct"],:mkQuote results],resPar]
if asps then
-- Make a unique(ish) id for asp files
aspId := strconc(getEnv('"SPADNUM"), gensym('"NAG"))
body := ["SEQ",:makeAspGenerators(asps,aspTypes,aspId),_
makeCompilation(asps,file,aspId),_
["pretend",call,fType] ]
else
body := ["pretend",call,fType]
interpret ["DEF",[name,:argNames],["Result",:aType],nilLst,_
[["$elt","Result","construct"],body]]
stripNil u ==
[first(u), ["construct",:second(u)], if third(u) then "true" else "false"]
makeUnion aspType ==
-- The argument is the type of the asp to be generated. We would like to
-- allow the user to be able to provide a fileName as an alternative
-- argument, so this builds the Union of aspType and FileName.
["Union",[":","fp",aspType],[":","fn","FileName"]]
axiomType(a,decls,asps,aspInfo) ==
member(a, asps) =>
entry := first [u for u in aspInfo | first(u) = a]
ftc := ["$elt","FortranType","construct"]
rc := ["$elt", _
["Record",[":","key","Symbol"],[":","entry","FortranType"]], _
"construct"]
makeUnion ["FortranProgram",_
a,_
second(entry),_
["construct",:mkQuote third entry], _
[ ["$elt", "SymbolTable","symbolTable"],_
["construct",_
:[[rc,first(v),[ftc,:stripNil rest(v)]] for v in fourth entry]]_
] ]
spadTypeTTT(getFortranType(a,decls))
makeAspGenerators(asps,types,aspId) ==
-- The code generated here will manipulate the Fortran output stack and write
-- the asps out as Fortran.
[:makeAspGenerators1(u,v,aspId) for u in asps for v in types]
makeAspGenerators1(asp,type,aspId) ==
[[["$elt","FOP","pushFortranOutputStack"] ,_
["filename",'"",strconc(STRINGIMAGE asp,aspId),'"f"]] , _
makeOutputAsFortran makeSymbol strconc(STRINGIMAGE(asp),'"__arg"), _
[["$elt","FOP","popFortranOutputStack"]] _
]
makeOutputAsFortran arg ==
["IF",["case",arg,"fn"],["outputAsFortran",[arg,"fn"]],_
["outputAsFortran",[arg,"fp"]] ]
makeCompilation(asps,file,aspId) ==
[["$elt","Lisp","compileAndLink"],_
["construct",:[strconc(STRINGIMAGE a,aspId,'".f") for a in asps]], _
$fortranCompilerName,_
strconc(file,'".o"),_
strconc(file,'".spadexe"),_
$fortranLibraries]
compileAndLink(fortFileList,fortCompiler,cFile,outFile,linkerArgs) ==
SYSTEM strconc (fortCompiler, addSpaces fortFileList,_
cFile, " -o ",outFile," ",linkerArgs)
addSpaces(stringList) ==
l := " "
for s in stringList repeat l := strconc(l,s,'" ")
l
complexRows z ==
-- Take a list of lists of complexes (i.e. pairs of floats) and
-- make them look like a Fortran vector!
[:[:pair2list(u.i) for u in z] for i in 0..#(z.0)-1]
pair2list u == [first u,rest u]
vec2Lists1 u == [u.i for i in 0..#u-1]
vec2Lists u == [vec2Lists1 u.i for i in 0..#u-1]
spad2lisp(u) ==
-- Turn complexes into arrays of floats
first first(u)="Complex" =>
makeVector([makeVector([second u,CDDR u],"%DoubleFloat")],nil)
-- Turn arrays of complexes into arrays of floats so that tarnsposing
-- them puts them in the correct fortran order
first first(u)="Matrix" and first second first(u) = "Complex" =>
makeVector([makeVector(complexRows vec2Lists rest u,"%DoubleFloat")],nil)
rest(u)
invokeFortran(objFile,args,dummies,decls,results,actual) ==
actual := [spad2lisp(u) for u in first actual]
returnedValues := spadify( _
fortCall(objFile,prepareData(args,dummies,actual,decls),_
prepareResults(results,args,dummies,actual,decls)),_
results,decls,inFirstNotSecond(args,dummies),actual)
-- -- If there are one or two elements in returnedValues we must return a
-- -- cons cell, otherwise a vector. This is to match the internal
-- -- representation of an Axiom Record.
-- #returnedValues = 1 => returnedValues
-- #returnedValues = 2 => [first returnedValues,:second returnedValues]
-- makeVector(returnedValues,nil)
int2Bool u ==
-- Return something which looks like an axiom boolean
u=1 => "TRUE"
nil
makeResultRecord(name,type,value) ==
-- Take an object returned by the NAG routine and make it into an AXIOM
-- object of type Record(key:Symbol,entry:Any) for use by Result.
[name,:[spadTypeTTT type,:value]]
spadify(l,results,decls,names,actual) ==
-- The elements of list l are the output forms returned from the Fortran
-- code: integers, floats and vectors. Return spad forms of these, of
-- type Record(key:Symbol,entry:Any) (for use with the Result domain).
-- SETQ(RESULTS,l)
spadForms := nil
for i in 0..(#l -1) repeat
fort := NTH(i,l)
name := NTH(i,results)
ty := getFortranType(name,decls)
-- Result is a string
string? fort =>
spadForms := [makeResultRecord(name,ty,fort), :spadForms]
-- Result is a Complex Scalar
ty in ["double complex" , "complex"] =>
spadForms := [makeResultRecord(name,ty, _
[fort.0,:fort.1]),:spadForms]
-- Result is a Complex vector or array
LISTP(ty) and first(ty) in ["double complex" , "complex"] =>
dims := [getVal(u,names,actual) for u in rest ty]
els := nil
if #dims=1 then
els := [makeVector([[fort.(2*i),:fort.(2*i+1)] _
for i in 0..(first(dims)-1)],nil)]
else if #dims=2 then
for r in 0..(first(dims) - 1) repeat
innerEls := nil
for c in 0..(second(dims) - 1) repeat
offset := 2*(c*first(dims)+r)
innerEls := [[fort.offset,:fort.(offset+1)],:innerEls]
els := [makeVector(reverse! innerEls,nil),:els]
else
error ['"Can't cope with complex output dimensions higher than 2"]
spadForms := [makeResultRecord(name,ty,makeVector(reverse! els,nil)),
:spadForms]
-- Result is a Boolean vector or array
LISTP(ty) and first(ty)="logical" and #ty=2 =>
dim := getVal(second ty,names,actual)
spadForms := [makeResultRecord(name,ty,_
[int2Bool fort.i for i in 0..dim-1]), :spadForms]
LISTP(ty) and first(ty)="logical" =>
dims := [getVal(u,names,actual) for u in rest ty]
els := nil
if #dims=2 then
for r in 0..(first(dims) - 1) repeat
innerEls := nil
for c in 0..(second(dims) - 1) repeat
innerEls := [int2Bool fort.(c*first(dims)+r),:innerEls]
els := [reverse! innerEls,:els]
else
error ['"Can't cope with logical output dimensions higher than 2"]
spadForms := [makeResultRecord(name,ty,reverse! els), :spadForms]
-- Result is a vector or array
VECTORP fort =>
dims := [getVal(u,names,actual) for u in rest ty]
els := nil
-- Check to see whether we are dealing with a dummy (0-dimensional) array.
if scalarMember?(0,dims) then
els := [[]]
else if #dims=1 then
els := [makeVector([fort.i for i in 0..(first(dims)-1)],nil)]
else if #dims=2 then
for r in 0..(first(dims) - 1) repeat
innerEls := nil
for c in 0..(second(dims) - 1) repeat
innerEls := [fort.(c*first(dims)+r),:innerEls]
els := [makeVector(reverse! innerEls,nil),:els]
else if #dims=3 then
iDim := first(dims)
jDim := second dims
kDim := third dims
for r in 0..(iDim - 1) repeat
middleEls := nil
for c in 0..(jDim - 1) repeat
innerEls := nil
for p in 0..(kDim - 1) repeat
offset := p*jDim + c*kDim + r
innerEls := [fort.offset,:innerEls]
middleEls := [makeVector(reverse! innerEls,nil),:middleEls]
els := [makeVector(reverse! middleEls,nil),:els]
else
error ['"Can't cope with output dimensions higher than 3"]
if not scalarMember?(0,dims) then els := makeVector(reverse! els,nil)
spadForms := [makeResultRecord(name,ty,els), :spadForms]
-- Result is a Boolean Scalar
atom fort and ty="logical" =>
spadForms := [makeResultRecord(name,ty,int2Bool fort), :spadForms]
-- Result is a Scalar
atom fort =>
spadForms := [makeResultRecord(name,ty,fort),:spadForms]
error ['"Unrecognised output format: ",fort]
reverse! spadForms
lispType u ==
-- Return the lisp type equivalent to the given Fortran type.
LISTP u => lispType first u
u = "double" => "%DoubleFloat"
u = "double precision" => "DoubleFloat"
u = "integer" => "FIXNUM"
u = "logical" => "BOOLEAN"
u = "character" => "CHARACTER"
u = "double complex" => "%DoubleFloat"
error ['"Unrecognised Fortran type: ",u]
getVal(u,names,values) ==
-- if u is the i'th element of names, return the i'th element of values,
-- otherwise if it is an arithmetic expression evaluate it.
integer?(u) => u
LISTP(u) => eval [first(u), :[getVal(v,names,values) for v in rest u]]
(place := POSITION(u,names)) => NTH(place,values)
error ['"No value found for parameter: ",u]
prepareData(args,dummies,values,decls) ==
-- TTT: we don't
-- writeData handles all the mess
[args,dummies,values,decls]
checkForBoolean u ==
u = "BOOLEAN" => "%Short"
u
longZero == COERCE(0,"%DoubleFloat")
prepareResults(results,args,dummies,values,decls) ==
-- Create the floating point zeros (boot doesn't like 0.0d0, 0.0D0 etc)
data := nil
for u in results repeat
type := getFortranType(u,decls)
data := [defaultValue(type,inFirstNotSecond(args,dummies),values),:data]
where defaultValue(type,argNames,actual) ==
LISTP(type) and first(type)="character" => makeString 1
LISTP(type) and first(type) in ["complex","double complex"] =>
makeVector( makeList(
2*apply('_*,[getVal(tt,argNames,actual) for tt in rest(type)]),_
longZero),_
"%DoubleFloat" )
LISTP type => makeVector(_
makeList(
apply('_*,[getVal(tt,argNames,actual) for tt in rest(type)]),_
defaultValue(first type,argNames,actual)),_
checkForBoolean lispType first(type) )
type = "integer" => 0
type = "double" => longZero
type = "double precision" => longZero
type = "logical" => 0
type = "character" => makeString 1
type = "double complex" => makeVector([longZero,longZero],"%DoubleFloat")
error ['"Unrecognised Fortran type: ",type]
reverse! data
-- TTT this is dead code now
-- transposeVector(u,type) ==
-- -- Take a vector of vectors and return a single vector which is in column
-- -- order (i.e. swap from C to Fortran order).
-- els := nil
-- rows := first ARRAY_-DIMENSIONS(u)-1
-- cols := first ARRAY_-DIMENSIONS(u.0)-1
-- -- Could be a 3D Matrix
-- if VECTORP u.0.0 then
-- planes := first ARRAY_-DIMENSIONS(u.0.0)-1
-- for k in 0..planes repeat for j in 0..cols repeat for i in 0..rows repeat
-- els := [u.i.j.k,:els]
-- else
-- for j in 0..cols repeat for i in 0..rows repeat
-- els := [u.i.j,:els]
-- makeVector(reverse! els,type)
writeData(tmpFile,indata) ==
-- Write the elements of the list data to a temporary file. Return the
-- name of that file.
--
str := MAKE_-OUTSTREAM(tmpFile)
xstr := xdrOpen(str,true)
[args,dummies,values,decls] := indata
for v in values repeat
-- the two Boolean values
v = "T" =>
xdrWrite(xstr,1)
null v =>
xdrWrite(xstr,0)
-- characters
string? v =>
xdrWrite(xstr,v)
-- some array
VECTORP v =>
rows := first ARRAY_-DIMENSIONS(v)
-- is it 2d or more (most likely) ?
VECTORP v.0 =>
cols := first ARRAY_-DIMENSIONS(v.0)
-- is it 3d ?
VECTORP v.0.0 =>
planes := first ARRAY_-DIMENSIONS(v.0.0)
-- write 3d array
xdrWrite(xstr,rows*cols*planes)
for k in 0..planes-1 repeat
for j in 0..cols-1 repeat
for i in 0..rows-1 repeat
xdrWrite(xstr,v.i.j.k)
-- write 2d array
xdrWrite(xstr,rows*cols)
for j in 0..cols-1 repeat
for i in 0..rows-1 repeat xdrWrite(xstr,v.i.j)
-- write 1d array
xdrWrite(xstr,rows)
for i in 0..rows-1 repeat xdrWrite(xstr,v.i)
-- this is used for lists of booleans apparently in f01
LISTP v =>
xdrWrite(xstr,# v)
for el in v repeat
if el then xdrWrite(xstr,1) else xdrWrite(xstr,0)
-- integers
integer? v =>
xdrWrite(xstr,v)
-- floats
FLOATP v =>
xdrWrite(xstr,v)
SHUT(str)
tmpFile
readData(tmpFile,results) ==
-- read in the results from tmpFile. The list results is a list of
-- dummy objects of the correct type which will receive the data.
str := MAKE_-INSTREAM(tmpFile)
xstr := xdrOpen(str,false)
results := [xdrRead1(xstr,r) for r in results] where
xdrRead1(x,dummy) ==
VECTORP(dummy) and ZEROP(# dummy) => dummy
xdrRead(x,dummy)
SHUT(str)
results
generateDataName()==strconc($fortranTmpDir,getEnv('"HOST"),
getEnv('"SPADNUM"), gensym('"NAG"),'"data")
generateResultsName()==strconc($fortranTmpDir,getEnv('"HOST"),
getEnv('"SPADNUM"), gensym('"NAG"),'"results")
fortCall(objFile,data,results) ==
tmpFile1 := writeData(generateDataName(),data)
tmpFile2 := generateResultsName()
SYSTEM strconc(objFile,'" < ",tmpFile1,'" > ",tmpFile2)
results := readData(tmpFile2,results)
removeFile tmpFile1
removeFile tmpFile2
results
invokeNagman(objFiles,nfile,args,dummies,decls,results,actual) ==
actual := [spad2lisp(u) for u in first actual]
result := spadify(protectedNagCall(objFiles,nfile, _
prepareData(args,dummies,actual,decls),_
prepareResults(results,args,dummies,actual,decls)),_
results,decls,inFirstNotSecond(args,dummies),actual)
-- Tidy up asps
-- if objFiles then SYSTEM strconc('"rm -f ",addSpaces objFiles)
for fn in objFiles repeat removeFile fn
result
nagCall(objFiles,nfile,data,results,tmpFiled,tmpFiler) ==
nagMessagesString :=
$nagMessages => '"on"
'"off"
writeData(tmpFiled,data)
toSend:=strconc($nagHost,'" ",nfile,'" ",tmpFiler,'" ",tmpFiled,'" ",_
STRINGIMAGE($fortPersistence),'" ", nagMessagesString,'" ",addSpaces objFiles)
sockSendString(8,toSend)
if sockGetInt(8)=1 then
results := readData(tmpFiler,results)
else
error ['"An error was detected while reading data: ", _
'"perhaps an incorrect array index was given ?"]
results
protectedNagCall(objFiles,nfile,data,results) ==
errors :=true
val:=nil
td:=generateDataName()
tr:=generateResultsName()
UNWIND_-PROTECT( (val:=nagCall(objFiles,nfile,data,results,td,tr) ;errors :=nil),
errors =>( resetStackLimits(); sendNagmanErrorSignal();cleanUpAfterNagman(td,tr,objFiles)))
val
cleanUpAfterNagman(f1,f2,listf)==
PROBE_-FILE(f1) and DELETE_-FILE(f1)
PROBE_-FILE(f2) and DELETE_-FILE(f2)
for fn in listf repeat PROBE_-FILE(fn) and DELETE_-FILE(fn)
sendNagmanErrorSignal()==
-- excite nagman's signal handler!
sockSendSignal(8,15)
-- Globals
-- $fortranDirectory := nil
-- $fortranLibraries := '"-L/usr/local/lib/f90 -lf90 -L/usr/local/lib -lnag -lm"
-- $fortranTmpDir := '"/tmp/"
-- $addUnderscoreToFortranNames := true
-- $fortranCompilerName := '"f90"
inFirstNotSecond(f,s)==
[i for i in f | not member(i,s)]
-- Code for use in the Windows version of the AXIOM/NAG interface.
multiToUnivariate f ==
-- Take an AnonymousFunction, replace the bound variables by references to
-- elements of a vector, and compile it.
(first f) ~= "+->" => error "in multiToUnivariate: not an AnonymousFunction"
if cons? second f then
vars := CDADR f -- throw away '%Comma at start of variable list
else
vars := [second f]
body := COPY_-TREE third f
newVariable := gensym()
for index in 0..#vars-1 repeat
-- Remember that AXIOM lists, vectors etc are indexed from 1
body := substitute!(["elt",newVariable,index+1],vars.index,body)
-- We want a Vector DoubleFloat -> DoubleFloat
target := [["DoubleFloat"],["Vector",["DoubleFloat"]]]
rest interpret ["ADEF",[newVariable],target,[[],[]],body]
functionAndJacobian f ==
-- Take a mapping into n functions of n variables, produce code which will
-- evaluate function and jacobian values.
(first f) ~= "+->" => error "in functionAndJacobian: not an AnonymousFunction"
if cons? second f then
vars := CDADR f -- throw away '%Comma at start of variable list
else
vars := [second f]
#(vars) ~= #(CDADDR f) =>
error "number of variables should equal number of functions"
funBodies := COPY_-TREE CDADDR f
jacBodies := [:[DF(f,v) for v in vars] for f in funBodies] where
DF(fn,var) ==
["@",["convert",["differentiate",fn,var]],"InputForm"]
jacBodies := CDDR interpret [["$elt",["List",["InputForm"]],"construct"],:jacBodies]
newVariable := gensym()
for index in 0..#vars-1 repeat
-- Remember that AXIOM lists, vectors etc are indexed from 1
funBodies := substitute!(["elt",newVariable,index+1],vars.index,funBodies)
jacBodies := substitute!(["elt",newVariable,index+1],vars.index,jacBodies)
target := [["Vector",["DoubleFloat"]],["Vector",["DoubleFloat"]],["Integer"]]
rest interpret
["ADEF",[newVariable,"flag"],target,[[],[],[]],_
["IF", ["=","flag",1],_
["vector",["construct",:funBodies]],_
["vector",["construct",:jacBodies]]]]
vectorOfFunctions f ==
-- Take a mapping into n functions of m variables, produce code which will
-- evaluate function values.
(first f) ~= "+->" => error "in vectorOfFunctions: not an AnonymousFunction"
if cons? second f then
vars := CDADR f -- throw away '%Comma at start of variable list
else
vars := [second f]
funBodies := COPY_-TREE CDADDR f
newVariable := gensym()
for index in 0..#vars-1 repeat
-- Remember that AXIOM lists, vectors etc are indexed from 1
funBodies := substitute!(["elt",newVariable,index+1],vars.index,funBodies)
target := [["Vector",["DoubleFloat"]],["Vector",["DoubleFloat"]]]
rest interpret ["ADEF",[newVariable],target,[[],[]],["vector",["construct",:funBodies]]]
|