1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
|
-- Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd.
-- All rights reserved.
-- Copyright (C) 2007-2008, Gabriel Dos Reis.
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical Algorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import msgdb
import pathname
import modemap
import define
import iterator
namespace BOOT
module compiler where
compTopLevel: (%Form,%Mode,%Env) -> %Maybe %Triple
coerce: (%Triple,%Mode) -> %Maybe %Triple
convert: (%Triple,%Mode) -> %Maybe %Triple
comp: (%Form,%Mode,%Env) -> %Maybe %Triple
compOrCroak: (%Form,%Mode,%Env) -> %Maybe %Triple
compCompilerPredicate: (%Form,%Env) -> %Maybe %Triple
checkCallingConvention: (%List,%Short) -> %SimpleArray %Short
--%
compUniquely: (%Form,%Mode,%Env) -> %Maybe %Triple
compNoStacking: (%Form,%Mode,%Env) -> %Maybe %Triple
compNoStacking1: (%Form,%Mode,%Env,%List) -> %Maybe %Triple
compOrCroak1: (%Form,%Mode,%Env,%Thing) -> %Maybe %Triple
comp2: (%Form,%Mode,%Env) -> %Maybe %Triple
comp3: (%Form,%Mode,%Env) -> %Maybe %Triple
compExpression: (%Form,%Mode,%Env) -> %Maybe %Triple
compAtom: (%Form,%Mode,%Env) -> %Maybe %Triple
compSymbol: (%Form,%Mode,%Env) -> %Maybe %Triple
compString: (%Form,%Mode,%Env) -> %Maybe %Triple
compAtomWithModemap: (%Form,%Mode,%Env,%Thing) -> %Maybe %Triple
compTypeOf: (%Form,%Mode,%Env) -> %Maybe %Triple
compForm: (%Form,%Mode,%Env) -> %Maybe %Triple
compForm1: (%Form,%Mode,%Env) -> %Maybe %Triple
compForm2: (%Form,%Mode,%Env,%List) -> %Maybe %Triple
compForm3: (%Form,%Mode,%Env,%List) -> %Maybe %Triple
compArgumentsAndTryAgain: (%Form,%Mode,%Env) -> %Maybe %Triple
compExpressionList: (%List,%Mode,%Env) -> %Maybe %Triple
compWithMappingMode: (%Form,%Mode,%List) -> %List
compFormMatch: (%Modemap,%List) -> %Boolean
compFormWithModemap: (%Form,%Mode,%Env,%Modemap) -> %Maybe %Triple
compToApply: (%Form,%List,%Mode,%Env) -> %Maybe %Triple
compApplication: (%Form,%List,%Mode,%Env,%Triple) -> %Maybe %Triple
primitiveType: %Thing -> %Mode
modeEqual: (%Form,%Form) -> %Boolean
hasUniqueCaseView: (%Form,%Mode,%Env) -> %Boolean
convertOrCroak: (%Triple,%Mode) -> %Maybe %Triple
getFormModemaps: (%Form,%Env) -> %List
transImplementation: (%Form,%Modemap,%Thing) -> %Code
reshapeArgumentList: (%Form,%Signature) -> %Form
applyMapping: (%Form,%Mode,%Env,%List) -> %Maybe %Triple
compMapCond: (%Symbol,%Mode,%Env,%List) -> %Code
compMapCond': (%List,%Symbol,%Mode,%Env) -> %Code
compMapCond'': (%Thing,%Mode) -> %Boolean
compMapCondFun: (%Thing,%Symbol,%Mode,%Env) -> %Code
++ A list of routines for diagnostic reports. These functions, in an
++ abstract sense, have type: forall T: Type . String -> T, so they
++ can be used in T-returning functions, for any T.
$coreDiagnosticFunctions ==
'(error userError systemError)
++ list of functions to compile
$compileOnlyCertainItems := []
compTopLevel(x,m,e) ==
--+ signals that target is derived from lhs-- see NRTmakeSlot1Info
$NRTderivedTargetIfTrue: local := false
$killOptimizeIfTrue: local:= false
$forceAdd: local:= false
$packagesUsed: local := []
x is ["DEF",:.] or x is ["where",["DEF",:.],:.] =>
([val,mode,.]:= compOrCroak(x,m,e); [val,mode,e])
--keep old environment after top level function defs
compOrCroak(x,m,e)
compUniquely(x,m,e) ==
$compUniquelyIfTrue: local:= true
CATCH("compUniquely",comp(x,m,e))
compOrCroak(x,m,e) ==
compOrCroak1(x,m,e,'comp)
compOrCroak1(x,m,e,compFn) ==
fn(x,m,e,nil,nil,compFn) where
fn(x,m,e,$compStack,$compErrorMessageStack,compFn) ==
T:= CATCH("compOrCroak",FUNCALL(compFn,x,m,e)) => T
--stackAndThrow here and moan in UT LISP K does the appropriate THROW
$compStack:= [[x,m,e,$exitModeStack],:$compStack]
$s: local :=
compactify $compStack where
compactify al ==
null al => nil
LASSOC(first first al,rest al) => compactify rest al
[first al,:compactify rest al]
$level: local := #$s
errorMessage:=
$compErrorMessageStack ^= nil => first $compErrorMessageStack
"unspecified error"
$scanIfTrue =>
stackSemanticError(errorMessage,mkErrorExpr $level)
["failedCompilation",m,e]
displaySemanticErrors()
SAY("****** comp fails at level ",$level," with expression: ******")
displayComp $level
userError errorMessage
++ The form `x' is intended to be evaluated by the compiler, e.g. in
++ toplevel conditional definition or as sub-domain predicate.
++ Normalize operators and compile the form.
compCompilerPredicate(x,e) ==
$normalizeTree: local := true
compOrCroak(parseTran x, $Boolean, e)
comp(x,m,e) ==
T:= compNoStacking(x,m,e) => ($compStack:= nil; T)
$compStack:= [[x,m,e,$exitModeStack],:$compStack]
nil
compNoStacking(x,m,e) ==
T:= comp2(x,m,e) =>
$useRepresentationHack and m=$EmptyMode and T.mode=$Representation =>
[T.expr,"$",T.env]
T
--$Representation is bound in compDefineFunctor, set by doIt
--this hack says that when something is undeclared, $ is
--preferred to the underlying representation -- RDJ 9/12/83
--Now that `per' and `rep' are built in, we use the above
--hack only when `Rep' is defined the old way. -- gdr 2008/01/26
compNoStacking1(x,m,e,$compStack)
compNoStacking1(x,m,e,$compStack) ==
u:= get(RepIfRepHack m,"value",e) =>
(T:= comp2(x,u.expr,e) => [T.expr,m,T.env]; nil)
nil
comp2(x,m,e) ==
[y,m',e]:= comp3(x,m,e) or return nil
if $LISPLIB and isDomainForm(x,e) then
if isFunctor x then
$packagesUsed:= insert([opOf x],$packagesUsed)
--if null atom y and isDomainForm(y,e) then e := addDomain(x,e)
--line commented out to prevent adding derived domain forms
m^=m' and ($bootStrapMode or isDomainForm(m',e))=>[y,m',addDomain(m',e)]
--isDomainForm test needed to prevent error while compiling Ring
--$bootStrapMode-test necessary for compiling Ring in $bootStrapMode
[y,m',e]
comp3(x,m,$e) ==
--returns a Triple or %else nil to signalcan't do'
$e:= addDomain(m,$e)
e:= $e --for debugging purposes
m is ["Mapping",:.] => compWithMappingMode(x,m,e)
m is ["QUOTE",a] => (x=a => [x,m,$e]; nil)
STRINGP m => (atom x => (m=x or m=STRINGIMAGE x => [m,m,e]; nil); nil)
-- In quasiquote mode, x should match exactly
(y := isQuasiquote m) =>
y = x => [["QUOTE",x], m, $e]
nil
^x or atom x => compAtom(x,m,e)
op:= first x
getmode(op,e) is ["Mapping",:ml] and (u:= applyMapping(x,m,e,ml)) => u
op=":" => compColon(x,m,e)
op="::" => compCoerce(x,m,e)
not ($insideCompTypeOf=true) and stringPrefix?('"TypeOf",PNAME op) =>
compTypeOf(x,m,e)
t:= compExpression(x,m,e)
t is [x',m',e'] and not member(m',getDomainsInScope e') =>
[x',m',addDomain(m',e')]
t
compTypeOf(x:=[op,:argl],m,e) ==
$insideCompTypeOf: local := true
newModemap:= EQSUBSTLIST(argl,$FormalMapVariableList,get(op,'modemap,e))
e:= put(op,'modemap,newModemap,e)
comp3(x,m,e)
applyMapping([op,:argl],m,e,ml) ==
#argl^=#ml-1 => nil
isCategoryForm(first ml,e) =>
--is op a functor?
pairlis:= [[v,:a] for a in argl for v in $FormalMapVariableList]
ml' := SUBLIS(pairlis, ml)
argl':=
[T.expr for x in argl for m' in rest ml'] where
T() == [.,.,e]:= comp(x,m',e) or return "failed"
if argl'="failed" then return nil
form:= [op,:argl']
convert([form,first ml',e],m)
argl':=
[T.expr for x in argl for m' in rest ml] where
T() == [.,.,e]:= comp(x,m',e) or return "failed"
if argl'="failed" then return nil
form:=
atom op and not(op in $formalArgList) and not get(op,"value",e) =>
nprefix := $prefix or
-- following needed for referencing local funs at capsule level
getAbbreviation($op,#rest $form)
[op',:argl',"$"] where
op':= INTERN STRCONC(encodeItem nprefix,";",encodeItem op)
['call,['applyFun,op],:argl']
pairlis:= [[v,:a] for a in argl' for v in $FormalMapVariableList]
convert([form,SUBLIS(pairlis,first ml),e],m)
hasFormalMapVariable(x, vl) ==
$formalMapVariables: local := vl
null vl => false
ScanOrPairVec(function hasone?,x) where
hasone? x == MEMQ(x,$formalMapVariables)
compWithMappingMode(x,m is ["Mapping",m',:sl],oldE) ==
$killOptimizeIfTrue: local:= true
e:= oldE
isFunctor x =>
if get(x,"modemap",$CategoryFrame) is [[[.,target,:argModeList],.],:.] and
(and/[extendsCategoryForm("$",s,mode) for mode in argModeList for s in sl]
) and extendsCategoryForm("$",target,m') then return [x,m,e]
if STRINGP x then x:= INTERN x
for m in sl for v in (vl:= take(#sl,$FormalMapVariableList)) repeat
[.,.,e]:= compMakeDeclaration([":",v,m],$EmptyMode,e)
(vl ^= nil) and not hasFormalMapVariable(x, vl) => return
[u,.,.] := comp([x,:vl],m',e) or return nil
extractCodeAndConstructTriple(u, m, oldE)
null vl and (t := comp([x], m', e)) => return
[u,.,.] := t
extractCodeAndConstructTriple(u, m, oldE)
[u,.,.]:= comp(x,m',e) or return nil
uu:=optimizeFunctionDef [nil,["LAMBDA",vl,u]]
-- At this point, we have a function that we would like to pass.
-- Unfortunately, it makes various free variable references outside
-- itself. So we build a mini-vector that contains them all, and
-- pass this as the environment to our inner function.
$FUNNAME :local := nil
$FUNNAME__TAIL :local := [nil]
expandedFunction:= transformToBackendCode second uu
frees:=FreeList(expandedFunction,vl,nil,e)
where FreeList(u,bound,free,e) ==
atom u =>
not IDENTP u => free
MEMQ(u,bound) => free
v:=ASSQ(u,free) =>
RPLACD(v,1 + rest v)
free
null getmode(u,e) => free
[[u,:1],:free]
op := first u
op in '(QUOTE GO function) => free
op = "LAMBDA" =>
bound := UNIONQ(bound, second u)
for v in CDDR u repeat
free:=FreeList(v,bound,free,e)
free
op = "PROG" =>
bound := UNIONQ(bound, second u)
for v in CDDR u | not atom v repeat
free:=FreeList(v,bound,free,e)
free
op = "SEQ" =>
for v in rest u | not atom v repeat
free:=FreeList(v,bound,free,e)
free
op = "COND" =>
for v in rest u repeat
for vv in v repeat
free:=FreeList(vv,bound,free,e)
free
if atom op then u := rest u --Atomic functions aren't descended
for v in u repeat
free:=FreeList(v,bound,free,e)
free
expandedFunction :=
--One free can go by itself, more than one needs a vector
--An A-list name . number of times used
#frees = 0 => ["LAMBDA",[:vl,"$$"], :CDDR expandedFunction]
#frees = 1 =>
vec:=first first frees
["LAMBDA",[:vl,vec], :CDDR expandedFunction]
scode:=nil
vec:=nil
slist:=nil
locals:=nil
i:=-1
for v in frees repeat
i:=i+1
vec:=[first v,:vec]
rest v = 1 =>
--Only used once
slist:=[[first v,"getShellEntry","$$",i],:slist]
scode:=[['SETQ,first v,["getShellEntry","$$",i]],:scode]
locals:=[first v,:locals]
body:=
slist => SUBLISNQ(slist,CDDR expandedFunction)
CDDR expandedFunction
if locals then
if body is [["DECLARE",:.],:.] then
body := [first body,["PROG",locals,:scode,
["RETURN",["PROGN",:rest body]]]]
else body:=[["PROG",locals,:scode,["RETURN",["PROGN",:body]]]]
vec:=["VECTOR",:nreverse vec]
["LAMBDA",[:vl,"$$"],:body]
fname:=["CLOSEDFN",expandedFunction] --Like QUOTE, but gets compiled
uu:=
frees => ["CONS",fname,vec]
["LIST",fname]
[uu,m,oldE]
extractCodeAndConstructTriple(u, m, oldE) ==
u is ["call",fn,:.] =>
if fn is ["applyFun",a] then fn := a
[fn,m,oldE]
[op,:.,env] := u
[["CONS",["function",op],env],m,oldE]
compExpression(x,m,e) ==
$insideExpressionIfTrue: local:= true
-- special forms have dedicated compilers.
(op := first x) and IDENTP op and (fn := GET(op,"SPECIAL")) =>
FUNCALL(fn,x,m,e)
compForm(x,m,e)
compAtomWithModemap(x,m,e,v) ==
Tl :=
[[transImplementation(x,map,fn),target,e]
for map in v | map is [[.,target],[.,fn]]] =>
--accept only monadic operators
T:= or/[t for (t:= [.,target,.]) in Tl | modeEqual(m,target)] => T
1=#(Tl:= [y for t in Tl | (y:= convert(t,m))]) => first Tl
0<#Tl and m=$NoValueMode => first Tl
nil
transImplementation(op,map,fn) ==
fn := genDeltaEntry [op,:map]
fn is ["XLAM",:.] => [fn]
["call",fn]
compAtom(x,m,e) ==
T:= compAtomWithModemap(x,m,e,get(x,"modemap",e)) => T
x="nil" =>
T:=
modeIsAggregateOf('List,m,e) is [.,R]=> compList(x,['List,R],e)
modeIsAggregateOf('Vector,m,e) is [.,R]=> compVector(x,['Vector,R],e)
T => convert(T,m)
t:=
isSymbol x =>
compSymbol(x,m,e) or return nil
m = $OutputForm and primitiveType x => [x,m,e]
STRINGP x => [x,x,e]
[x,primitiveType x or return nil,e]
convert(t,m)
primitiveType x ==
x is nil => $EmptyMode
STRINGP x => $String
INTEGERP x =>
x=0 => $NonNegativeInteger
x>0 => $PositiveInteger
true => $NegativeInteger
FLOATP x => $DoubleFloat
nil
compSymbol(s,m,e) ==
s="$NoValue" => ["$NoValue",$NoValueMode,e]
isFluid s => [s,getmode(s,e) or return nil,e]
s="true" => ['(QUOTE T),$Boolean,e]
s="false" => [false,$Boolean,e]
s=m or isLiteral(s,e) => [["QUOTE",s],s,e]
v := get(s,"value",e) =>
--+
MEMQ(s,$functorLocalParameters) =>
NRTgetLocalIndex s
[s,v.mode,e] --s will be replaced by an ELT form in beforeCompile
[s,v.mode,e] --s has been SETQd
m':= getmode(s,e) =>
if not member(s,$formalArgList) and not MEMQ(s,$FormalMapVariableList) and
not isFunction(s,e) and null ($compForModeIfTrue=true) then errorRef s
[s,m',e] --s is a declared argument
MEMQ(s,$FormalMapVariableList) =>
stackMessage('"no mode found for %1b",[s])
m = $OutputForm or m = $Symbol => [['QUOTE,s],m,e]
not isFunction(s,e) => errorRef s
++ Return true if `m' is the most recent unique type case assumption
++ on `x' that predates its declaration in environment `e'.
hasUniqueCaseView(x,m,e) ==
props := getProplist(x,e)
for [p,:v] in props repeat
p = "condition" and v is [["case",.,t],:.] => return modeEqual(t,m)
p = "value" => return false
convertOrCroak(T,m) ==
u:= convert(T,m) => u
userError ["CANNOT CONVERT: ",T.expr,"%l"," OF MODE: ",T.mode,"%l",
" TO MODE: ",m,"%l"]
convert(T,m) ==
coerce(T,resolve(T.mode,m) or return nil)
mkUnion(a,b) ==
b="$" and $Rep is ["Union",:l] => b
a is ["Union",:l] =>
b is ["Union",:l'] => ["Union",:union(l,l')]
["Union",:union([b],l)]
b is ["Union",:l] => ["Union",:union([a],l)]
["Union",a,b]
maxSuperType(m,e) ==
typ:= get(m,"SuperDomain",e) => maxSuperType(typ,e)
m
hasType(x,e) ==
fn get(x,"condition",e) where
fn x ==
null x => nil
x is [["case",.,y],:.] => y
fn rest x
--% General Forms
compForm(form,m,e) ==
T:=
compForm1(form,m,e) or compArgumentsAndTryAgain(form,m,e) or return
stackMessageIfNone ["cannot compile","%b",form,"%d"]
T
compArgumentsAndTryAgain(form is [.,:argl],m,e) ==
-- used in case: f(g(x)) where f is in domain introduced by
-- comping g, e.g. for (ELT (ELT x a) b), environment can have no
-- modemap with selector b
form is ["elt",a,.] =>
([.,.,e]:= comp(a,$EmptyMode,e) or return nil; compForm1(form,m,e))
u:= for x in argl repeat [.,.,e]:= comp(x,$EmptyMode,e) or return "failed"
u="failed" => nil
compForm1(form,m,e)
outputComp(x,e) ==
u:=comp(['_:_:,x,$OutputForm],$OutputForm,e) => u
x is ['construct,:argl] =>
[['LIST,:[([.,.,e]:=outputComp(x,e)).expr for x in argl]],$OutputForm,e]
(v:= get(x,"value",e)) and (v.mode is ['Union,:l]) =>
[['coerceUn2E,x,v.mode],$OutputForm,e]
[x,$OutputForm,e]
compForm1(form is [op,:argl],m,e) ==
op in $coreDiagnosticFunctions =>
[[op,:[([.,.,e]:=outputComp(x,e)).expr for x in argl]],m,e]
op is ["elt",domain,op'] =>
domain="Lisp" =>
--op'='QUOTE and null rest argl => [first argl,m,e]
[[op',:[([.,.,e]:= compOrCroak(x,$EmptyMode,e)).expr for x in argl]],m,e]
domain=$Expression and op'="construct" => compExpressionList(argl,m,e)
(op'="COLLECT") and coerceable(domain,m,e) =>
(T:= comp([op',:argl],domain,e) or return nil; coerce(T,m))
-- Next clause added JHD 8/Feb/94: the clause after doesn't work
-- since addDomain refuses to add modemaps from Mapping
(domain is ['Mapping,:.]) and
(ans := compForm2([op',:argl],m,e:= augModemapsFromDomain1(domain,domain,e),
[x for x in getFormModemaps([op',:argl],e) | x is [[ =domain,:.],:.]])) => ans
ans := compForm2([op',:argl],m,e:= addDomain(domain,e),
[x for x in getFormModemaps([op',:argl],e) | x is [[ =domain,:.],:.]]) => ans
(op'="construct") and coerceable(domain,m,e) =>
(T:= comp([op',:argl],domain,e) or return nil; coerce(T,m))
nil
e:= addDomain(m,e) --???unneccessary because of comp2's call???
(mmList:= getFormModemaps(form,e)) and (T:= compForm2(form,m,e,mmList)) => T
compToApply(op,argl,m,e)
compExpressionList(argl,m,e) ==
Tl:= [[.,.,e]:= comp(x,$Expression,e) or return "failed" for x in argl]
Tl="failed" => nil
convert([["LIST",:[y.expr for y in Tl]],$Expression,e],m)
compForm2(form is [op,:argl],m,e,modemapList) ==
sargl:= TAKE(# argl, $TriangleVariableList)
aList:= [[sa,:a] for a in argl for sa in sargl]
modemapList:= SUBLIS(aList,modemapList)
deleteList:=[]
newList := []
-- now delete any modemaps that are subsumed by something else,
-- provided the conditions are right (i.e. subsumer true
-- whenever subsumee true)
for u in modemapList repeat
if u is [[dc,:.],[cond,["Subsumed",.,nsig]]] and
(v:=assoc([dc,:nsig],modemapList)) and v is [.,[ncond,:.]] then
deleteList:=[u,:deleteList]
if not PredImplies(ncond,cond) then
newList := [[CAR u,[cond,['ELT,dc,nil]]],:newList]
if deleteList then
modemapList := [u for u in modemapList | not MEMQ(u,deleteList)]
-- We can use MEMQ since deleteList was built out of members of modemapList
-- its important that subsumed ops (newList) be considered last
if newList then
modemapList := append(modemapList,newList)
-- The calling convention vector is used to determine when it is
-- appropriate to infer type by compiling the argument vs. just
-- looking up the parameter type for flag arguments.
cc := checkCallingConvention([sig for [[.,:sig],:.] in modemapList], #argl)
Tl:=
[[.,.,e]:= T for x in argl for i in 0..
while (T := inferMode(x,cc.i > 0,e))] where
inferMode(x,flag,e) ==
flag => [x,quasiquote x,e]
isSimple x and compUniquely(x,$EmptyMode,e)
or/[x for x in Tl] =>
partialModeList:= [(x => x.mode; nil) for x in Tl]
compFormPartiallyBottomUp(form,m,e,modemapList,partialModeList) or
compForm3(form,m,e,modemapList)
compForm3(form,m,e,modemapList)
++ We are about to compile a call. Returns true if each argument
++ partially matches (as could be determined by type inference) the
++ corresponding expected type in the callee's modemap.
compFormMatch(mm,partialModeList) == main where
main() ==
mm is [[.,.,:argModeList],:.] and match(argModeList,partialModeList)
or wantArgumentsAsTuple(partialModeList,argModeList)
match(a,b) ==
null b => true
null first b => match(rest a,rest b)
first a=first b and match(rest a,rest b)
compFormPartiallyBottomUp(form,m,e,modemapList,partialModeList) ==
mmList:= [mm for mm in modemapList | compFormMatch(mm,partialModeList)] =>
compForm3(form,m,e,mmList)
compForm3(form is [op,:argl],m,e,modemapList) ==
T:=
or/
[compFormWithModemap(form,m,e,first (mml:= ml))
for ml in tails modemapList]
$compUniquelyIfTrue =>
or/[compFormWithModemap(form,m,e,mm) for mm in rest mml] =>
THROW("compUniquely",nil)
T
T
compFormWithModemap(form,m,e,modemap) ==
[map:= [.,target,:sig],[pred,impl]]:= modemap
[op,:argl] := form := reshapeArgumentList(form,sig)
if isCategoryForm(target,e) and isFunctor op then
[modemap,e]:= substituteIntoFunctorModemap(argl,modemap,e) or return nil
[map:= [.,target,:.],:cexpr]:= modemap
sv:=listOfSharpVars map
if sv then
-- SAY [ "compiling ", op, " in compFormWithModemap,
-- mode= ",map," sharp vars=",sv]
for x in argl for ss in $FormalMapVariableList repeat
if ss in sv then
[map:= [.,target,:.],:cexpr]:= modemap :=SUBST(x,ss,modemap)
-- SAY ["new map is",map]
not (target':= coerceable(target,m,e)) => nil
map:= [target',:rest map]
[f,Tl,sl]:= compApplyModemap(form,modemap,e,nil) or return nil
--generate code; return
T:=
[x',m',e'] where
m':= SUBLIS(sl,map.(1))
x':=
form':= [f,:[t.expr for t in Tl]]
m'=$Category or isCategoryForm(m',e) => form'
-- try to deal with new-style Unions where we know the conditions
op = "elt" and f is ['XLAM,:.] and IDENTP(z := first argl) and
(c:=get(z,'condition,e)) and
c is [["case",=z,c1]] and
(c1 is [":",=(second argl),=m] or EQ(c1,second argl) ) =>
-- first is a full tag, as placed by getInverseEnvironment
-- second is what getSuccessEnvironment will place there
["CDR",z]
["call",:form']
e':=
Tl => (LAST Tl).env
e
convert(T,m)
-- This version tends to give problems with #1 and categories
-- applyMapping([op,:argl],m,e,ml) ==
-- #argl^=#ml-1 => nil
-- mappingHasCategoryTarget :=
-- isCategoryForm(first ml,e) => --is op a functor?
-- form:= [op,:argl']
-- pairlis:= [[v,:a] for a in argl for v in $FormalMapVariableList]
-- ml:= SUBLIS(pairlis,ml)
-- true
-- false
-- argl':=
-- [T.expr for x in argl for m' in rest ml] where
-- T() == [.,.,e]:= comp(x,m',e) or return "failed"
-- if argl'="failed" then return nil
-- mappingHasCategoryTarget => convert([form,first ml,e],m)
-- form:=
-- not member(op,$formalArgList) and ATOM op =>
-- [op',:argl',"$"] where
-- op':= INTERN STRCONC(STRINGIMAGE $prefix,";",STRINGIMAGE op)
-- ["call",["applyFun",op],:argl']
-- pairlis:= [[v,:a] for a in argl' for v in $FormalMapVariableList]
-- convert([form,SUBLIS(pairlis,first ml),e],m)
++ Returns the list of candidate modemaps for a form. A modemap
++ is candidate for a form if its signature has the same number
++ of paramter types as arguments supplied to the form. A special
++ case is made for a modemap whose sole parameter type is a Tuple.
++ In that case, it matches any number of supplied arguments.
getFormModemaps(form is [op,:argl],e) ==
op is ["elt",domain,op1] =>
[x for x in getFormModemaps([op1,:argl],e) | x is [[ =domain,:.],:.]]
not atom op => nil
modemapList:= get(op,"modemap",e)
-- Within default implementations, modemaps cannot mention the
-- current domain.
if $insideCategoryPackageIfTrue then
modemapList := [x for x in modemapList | x is [[dom,:.],:.] and dom ^= '$]
if op="elt"
then modemapList:= eltModemapFilter(LAST argl,modemapList,e) or return nil
else
if op="setelt" then modemapList:=
seteltModemapFilter(CADR argl,modemapList,e) or return nil
nargs:= #argl
finalModemapList:= [mm for (mm:= [[.,.,:sig],:.]) in modemapList
| enoughArguments(argl,sig)]
modemapList and null finalModemapList =>
stackMessage('"no modemap for %1b with %2 arguments", [op,nargs])
finalModemapList
++ We are either compiling a function call, or trying to determine
++ whether we know something about a function being defined with
++ parameters are not declared in the definition. `sigs' is the list of
++ candidate signatures for `nargs' arguments or parameters. We need
++ to detemine whether any of the arguments are flags. If any
++ operation takes a flag argument, then all other overloads must have
++ the same arity and must take flag argument in the same position.
++ Returns a vector of length `nargs' with positive entries indicating
++ flag arguments, and negative entries for normal argument passing.
checkCallingConvention(sigs,nargs) ==
v := makeFilledSimpleArray("%Short",nargs,0)
for sig in sigs repeat
for t in rest sig
for i in 0.. repeat
isQuasiquote t =>
v.i < 0 => userError '"flag argument restriction violation"
v.i := v.i + 1
v.i > 0 => userError '"flag argument restriction violation"
v.i := v.i - 1
v
eltModemapFilter(name,mmList,e) ==
isConstantId(name,e) =>
l:= [mm for mm in mmList | mm is [[.,.,.,sel,:.],:.] and sel=name] => l
--there are elts with extra parameters
stackMessage('"selector variable: %1b is undeclared and unbound",[name])
nil
mmList
seteltModemapFilter(name,mmList,e) ==
isConstantId(name,e) =>
l:= [mm for (mm:= [[.,.,.,sel,:.],:.]) in mmList | sel=name] => l
--there are setelts with extra parameters
stackMessage('"selector variable: %1b is undeclared and unbound",[name])
nil
mmList
compToApply(op,argl,m,e) ==
T:= compNoStacking(op,$EmptyMode,e) or return nil
m1:= T.mode
T.expr is ["QUOTE", =m1] => nil
compApplication(op,argl,m,T.env,T)
compApplication(op,argl,m,e,T) ==
T.mode is ['Mapping, retm, :argml] =>
#argl ^= #argml => nil
retm := resolve(m, retm)
retm = $Category or isCategoryForm(retm,e) => nil -- not handled
argTl := [[.,.,e] := comp(x,m,e) or return "failed"
for x in argl for m in argml]
argTl = "failed" => nil
form:=
not (member(op,$formalArgList) or member(T.expr,$formalArgList)) and ATOM T.expr =>
nprefix := $prefix or
-- following needed for referencing local funs at capsule level
getAbbreviation($op,#rest $form)
[op',:[a.expr for a in argTl],"$"] where
op':= INTERN STRCONC(encodeItem nprefix,";",encodeItem T.expr)
['call, ['applyFun, T.expr], :[a.expr for a in argTl]]
coerce([form, retm, e],resolve(retm,m))
op = 'elt => nil
eltForm := ['elt, op, :argl]
comp(eltForm, m, e)
++ `form' is a call to a operation described by the signature `sig'.
++ Massage the call so that homogeneous variable length argument lists
++ are properly tuplified.
reshapeArgumentList(form,sig) ==
[op,:args] := form
wantArgumentsAsTuple(args,sig) => [op,["%Comma",:args]]
form
substituteIntoFunctorModemap(argl,modemap is [[dc,:sig],:.],e) ==
#dc^=#sig =>
keyedSystemError("S2GE0016",['"substituteIntoFunctorModemap",
'"Incompatible maps"])
#argl=#rest sig =>
--here, we actually have a functor form
sig:= EQSUBSTLIST(argl,rest dc,sig)
--make new modemap, subst. actual for formal parametersinto modemap
Tl:= [[.,.,e]:= compOrCroak(a,m,e) for a in argl for m in rest sig]
substitutionList:= [[x,:T.expr] for x in rest dc for T in Tl]
[SUBLIS(substitutionList,modemap),e]
nil
--% SPECIAL EVALUATION FUNCTIONS
compConstructorCategory(x,m,e) == [x,resolve($Category,m),e]
compString(x,m,e) == [x,resolve($StringCategory,m),e]
--% SUBSET CATEGORY
compSubsetCategory: (%Form,%Mode,%Env) -> %Maybe %Triple
compSubsetCategory(["SubsetCategory",cat,R],m,e) ==
--1. put "Subsets" property on R to allow directly coercion to subset;
-- allow automatic coercion from subset to R but not vice versa
e:= put(R,"Subsets",[[$lhsOfColon,"isFalse"]],e)
--2. give the subset domain modemaps of cat plus 3 new functions
comp(["Join",cat,C'],m,e) where
C'() ==
substitute($lhsOfColon,"$",C'') where
C''() ==
["CATEGORY","domain",["SIGNATURE","coerce",[R,"$"]],["SIGNATURE",
"lift",[R,"$"]],["SIGNATURE","reduce",["$",R]]]
--% CONS
compCons: (%Form,%Mode,%Env) -> %Maybe %Triple
compCons1: (%Form,%Mode,%Env) -> %Maybe %Triple
compCons(form,m,e) == compCons1(form,m,e) or compForm(form,m,e)
compCons1(["CONS",x,y],m,e) ==
[x,mx,e]:= comp(x,$EmptyMode,e) or return nil
null y => convert([["LIST",x],["List",mx],e],m)
yt:= [y,my,e]:= comp(y,$EmptyMode,e) or return nil
T:=
my is ["List",m',:.] =>
mr:= ["List",resolve(m',mx) or return nil]
yt':= convert(yt,mr) or return nil
[x,.,e]:= convert([x,mx,yt'.env],second mr) or return nil
yt'.expr is ["LIST",:.] => [["LIST",x,:rest yt'.expr],mr,e]
[["CONS",x,yt'.expr],mr,e]
[["CONS",x,y],["Pair",mx,my],e]
convert(T,m)
--% SETQ
compSetq: (%List,%Thing,%List) -> %List
compSetq1: (%Form,%Thing,%Mode,%List) -> %List
compSetq(["%LET",form,val],m,E) ==
compSetq1(form,val,m,E)
compSetq1(form,val,m,E) ==
IDENTP form => setqSingle(form,val,m,E)
form is [":",x,y] =>
[.,.,E']:= compMakeDeclaration(form,$EmptyMode,E)
compSetq(["%LET",x,val],m,E')
form is [op,:l] =>
op="CONS" => setqMultiple(uncons form,val,m,E)
op="%Comma" => setqMultiple(l,val,m,E)
setqSetelt(form,val,m,E)
compMakeDeclaration: (%Form,%Mode,%Env) -> %Maybe %Triple
compMakeDeclaration(x,m,e) ==
$insideExpressionIfTrue: local := false
compColon(x,m,e)
setqSetelt([v,:s],val,m,E) ==
comp(["setelt",v,:s,val],m,E)
setqSingle(id,val,m,E) ==
$insideSetqSingleIfTrue: local:= true
--used for comping domain forms within functions
currentProplist:= getProplist(id,E)
m'':=
get(id,"mode",E) or getmode(id,E) or
(if m=$NoValueMode then $EmptyMode else m)
-- m'':= LASSOC("mode",currentProplist) or $EmptyMode
--for above line to work, line 3 of compNoStacking is required
T:=
eval or return nil where
eval() ==
T:= comp(val,m'',E) => T
not get(id,"mode",E) and m'' ^= (maxm'':=maxSuperType(m'',E)) and
(T:=comp(val,maxm'',E)) => T
(T:= comp(val,$EmptyMode,E)) and getmode(T.mode,E) =>
assignError(val,T.mode,id,m'')
T':= [x,m',e']:= convert(T,m) or return nil
if $profileCompiler = true then
null IDENTP id => nil
key :=
id in rest $form => "arguments"
"locals"
profileRecord(key,id,T.mode)
newProplist :=
consProplistOf(id,currentProplist,"value",removeEnv [val,:rest T])
e':=
CONSP id => e'
addBinding(id,newProplist,e')
if isDomainForm(val,e') then
if isDomainInScope(id,e') then
stackWarning("domain valued variable %1b has been reassigned within its scope",[id])
e':= augModemapsFromDomain1(id,val,e')
--all we do now is to allocate a slot number for lhs
--e.g. the %LET form below will be changed by putInLocalDomainReferences
--+
if k := NRTassocIndex(id) then
form := ["setShellEntry","$",k,x]
else form:=
$QuickLet => ["%LET",id,x]
["%LET",id,x,
(isDomainForm(x,e') => ['ELT,id,0];CAR outputComp(id,e'))]
[form,m',e']
assignError(val,m',form,m) ==
val =>
stackMessage('"CANNOT ASSIGN: %1b OF MODE: %2pb TO: %3b OF MODE: %4bp",
[val,m',form,m])
stackMessage('"CANNOT ASSIGN: %1b TO: %2b OF MODE: %3pb",[val,form,m])
setqMultiple(nameList,val,m,e) ==
val is ["CONS",:.] and m=$NoValueMode =>
setqMultipleExplicit(nameList,uncons val,m,e)
val is ["%Comma",:l] and m=$NoValueMode => setqMultipleExplicit(nameList,l,m,e)
1 --create a gensym, %add to local environment, compile and assign rhs
g:= genVariable()
e:= addBinding(g,nil,e)
T:= [.,m1,.]:= compSetq1(g,val,$EmptyMode,e) or return nil
e:= put(g,"mode",m1,e)
[x,m',e]:= convert(T,m) or return nil
1.1 --exit if result is a list
m1 is ["List",D] =>
for y in nameList repeat
e:= put(y,"value",[genSomeVariable(),D,$noEnv],e)
convert([["PROGN",x,["%LET",nameList,g],g],m',e],m)
2 --verify that the #nameList = number of parts of right-hand-side
selectorModePairs:=
--list of modes
decompose(m1,#nameList,e) or return nil where
decompose(t,length,e) ==
t is ["Record",:l] => [[name,:mode] for [":",name,mode] in l]
comp(t,$EmptyMode,e) is [.,["RecordCategory",:l],.] =>
[[name,:mode] for [":",name,mode] in l]
stackMessage('"no multiple assigns to mode: %1p",[t])
#nameList^=#selectorModePairs =>
stackMessage('"%1b must decompose into %2 components",[val,#nameList])
3 --generate code; return
assignList:=
[([.,.,e]:= compSetq1(x,["elt",g,y],z,e) or return "failed").expr
for x in nameList for [y,:z] in selectorModePairs]
if assignList="failed" then NIL
else [MKPROGN [x,:assignList,g],m',e]
setqMultipleExplicit(nameList,valList,m,e) ==
#nameList^=#valList =>
stackMessage('"Multiple assignment error; # of items in: %1b must = # in: %2",[nameList,valList])
gensymList:= [genVariable() for name in nameList]
assignList:=
--should be fixed to declare genVar when possible
[[.,.,e]:= compSetq1(g,val,$EmptyMode,e) or return "failed"
for g in gensymList for val in valList]
assignList="failed" => nil
reAssignList:=
[[.,.,e]:= compSetq1(name,g,$EmptyMode,e) or return "failed"
for g in gensymList for name in nameList]
reAssignList="failed" => nil
[["PROGN",:[T.expr for T in assignList],:[T.expr for T in reAssignList]],
$NoValueMode, (LAST reAssignList).env]
--% Quasiquotation
++ Compile a quotation `[| form |]'. form is not type-checked, and
++ is returned as is. Note: when get to support splicing, we would
++ need to scan `form' to see whether there is any computation that
++ must be done.
++ ??? Another strategy would be to infer a more accurate domain
++ ??? based on the meta operator, e.g. (DEF ...) would be a
++ DefinitionAst, etc. That however requires that we have a full
++ fledged AST algebra -- which we don't have yet in mainstream.
compileQuasiquote: (%List,%Thing,%List) -> %List
compileQuasiquote(["[||]",:form],m,e) ==
null form => nil
coerce([["QUOTE", :form],$Syntax,e], m)
--% WHERE
compWhere: (%Form,%Mode,%Env) -> %Maybe %Triple
compWhere([.,form,:exprList],m,eInit) ==
$insideExpressionIfTrue: local:= false
$insideWhereIfTrue: local:= true
e:= eInit
u:=
for item in exprList repeat
[.,.,e]:= comp(item,$EmptyMode,e) or return "failed"
u="failed" => return nil
$insideWhereIfTrue:= false
[x,m,eAfter]:= comp(macroExpand(form,eBefore:= e),m,e) or return nil
eFinal:=
del:= deltaContour(eAfter,eBefore) => addContour(del,eInit)
eInit
[x,m,eFinal]
compConstruct: (%Form,%Mode,%Env) -> %Maybe %Triple
compConstruct(form is ["construct",:l],m,e) ==
y:= modeIsAggregateOf("List",m,e) =>
T:= compList(l,["List",second y],e) => convert(T,m)
compForm(form,m,e)
y:= modeIsAggregateOf("Vector",m,e) =>
T:= compVector(l,["Vector",second y],e) => convert(T,m)
compForm(form,m,e)
T:= compForm(form,m,e) => T
for D in getDomainsInScope e repeat
(y:=modeIsAggregateOf("List",D,e)) and
(T:= compList(l,["List",second y],e)) and (T':= convert(T,m)) =>
return T'
(y:=modeIsAggregateOf("Vector",D,e)) and
(T:= compVector(l,["Vector",second y],e)) and (T':= convert(T,m)) =>
return T'
++ Compile a literal (quoted) symbol.
compQuote: (%Form,%Mode,%Env) -> %Maybe %Triple
compQuote(expr,m,e) ==
expr is ["QUOTE",x] and IDENTP x => convert([expr,$Symbol,e],m)
stackAndThrow('"%1b is not a literal symbol.",[x])
compList: (%Form,%Mode,%Env) -> %Maybe %Triple
compList(l,m is ["List",mUnder],e) ==
null l => [NIL,m,e]
Tl:= [[.,mUnder,e]:= comp(x,mUnder,e) or return "failed" for x in l]
Tl="failed" => nil
T:= [["LIST",:[T.expr for T in Tl]],["List",mUnder],e]
compVector: (%Form,%Mode,%Env) -> %Maybe %Triple
compVector(l,m is ["Vector",mUnder],e) ==
null l => [$EmptyVector,m,e]
Tl:= [[.,mUnder,e]:= comp(x,mUnder,e) or return "failed" for x in l]
Tl="failed" => nil
[["VECTOR",:[T.expr for T in Tl]],m,e]
--% MACROS
++ True if we are compiling a macro definition.
$macroIfTrue := false
compMacro(form,m,e) ==
$macroIfTrue: local:= true
["MDEF",lhs,signature,specialCases,rhs]:= form
if $verbose then
prhs :=
rhs is ['CATEGORY,:.] => ['"-- the constructor category"]
rhs is ['Join,:.] => ['"-- the constructor category"]
rhs is ['CAPSULE,:.] => ['"-- the constructor capsule"]
rhs is ['add,:.] => ['"-- the constructor capsule"]
formatUnabbreviated rhs
sayBrightly ['" processing macro definition",'%b,
:formatUnabbreviated lhs,'" ==> ",:prhs,'%d]
m=$EmptyMode or m=$NoValueMode =>
["/throwAway",$NoValueMode,put(first lhs,"macro",macroExpand(rhs,e),e)]
--% SEQ
compSeq: (%Form,%Mode,%Env) -> %Maybe %Triple
compSeq1: (%Form,%List,%Env) -> %Maybe %Triple
compSeqItem: (%Thing,%Thing,%List) -> %List
compSeq(["SEQ",:l],m,e) ==
compSeq1(l,[m,:$exitModeStack],e)
compSeq1(l,$exitModeStack,e) ==
$insideExpressionIfTrue: local
$finalEnv: local := nil --used in replaceExitEtc.
c:=
[([.,.,e]:=
--this used to be compOrCroak-- but changed so we can back out
($insideExpressionIfTrue:= NIL; compSeqItem(x,$NoValueMode,e) or return
"failed")).expr for x in l]
if c="failed" then return nil
catchTag:= MKQ GENSYM()
form:= ["SEQ",:replaceExitEtc(c,catchTag,"TAGGEDexit",$exitModeStack.(0))]
[["CATCH",catchTag,form],$exitModeStack.(0),$finalEnv]
compSeqItem(x,m,e) ==
comp(macroExpand(x,e),m,e)
replaceExitEtc(x,tag,opFlag,opMode) ==
(fn(x,tag,opFlag,opMode); x) where
fn(x,tag,opFlag,opMode) ==
atom x => nil
x is ["QUOTE",:.] => nil
x is [ =opFlag,n,t] =>
rplac(CAADDR x,replaceExitEtc(CAADDR x,tag,opFlag,opMode))
n=0 =>
$finalEnv:=
--bound in compSeq1 and compDefineCapsuleFunction
$finalEnv => intersectionEnvironment($finalEnv,t.env)
t.env
rplac(first x,"THROW")
rplac(CADR x,tag)
rplac(CADDR x,(convertOrCroak(t,opMode)).expr)
true => rplac(CADR x,CADR x-1)
x is [key,n,t] and MEMQ(key,'(TAGGEDreturn TAGGEDexit)) =>
rplac(first t,replaceExitEtc(first t,tag,opFlag,opMode))
replaceExitEtc(first x,tag,opFlag,opMode)
replaceExitEtc(rest x,tag,opFlag,opMode)
--% SUCHTHAT
compSuchthat: (%Form,%Mode,%Env) -> %Maybe %Triple
compSuchthat([.,x,p],m,e) ==
[x',m',e]:= comp(x,m,e) or return nil
[p',.,e]:= comp(p,$Boolean,e) or return nil
e:= put(x',"condition",p',e)
[x',m',e]
--% exit
compExit: (%Form,%Mode,%Env) -> %Maybe %Triple
compExit(["exit",level,x],m,e) ==
index:= level-1
$exitModeStack = [] => comp(x,m,e)
m1:= $exitModeStack.index
[x',m',e']:=
u:=
comp(x,m1,e) or return
stackMessageIfNone ["cannot compile exit expression",x,"in mode",m1]
modifyModeStack(m',index)
[["TAGGEDexit",index,u],m,e]
modifyModeStack(m,index) ==
$reportExitModeStack =>
SAY("exitModeStack: ",COPY $exitModeStack," ====> ",
($exitModeStack.index:= resolve(m,$exitModeStack.index); $exitModeStack))
$exitModeStack.index:= resolve(m,$exitModeStack.index)
compLeave: (%Form,%Mode,%Env) -> %Maybe %Triple
compLeave(["leave",level,x],m,e) ==
index:= #$exitModeStack-1-$leaveLevelStack.(level-1)
[x',m',e']:= u:= comp(x,$exitModeStack.index,e) or return nil
modifyModeStack(m',index)
[["TAGGEDexit",index,u],m,e]
--% return
compReturn: (%Form,%Mode,%Env) -> %Maybe %Triple
compReturn(["return",level,x],m,e) ==
null $exitModeStack =>
stackAndThrow('"the return before %1b is unneccessary",[x])
nil
level^=1 => userError '"multi-level returns not supported"
index:= MAX(0,#$exitModeStack-1)
if index >= 0 then
$returnMode:= resolve($exitModeStack.index,$returnMode)
[x',m',e']:= u:= comp(x,$returnMode,e) or return nil
if index>=0 then
$returnMode:= resolve(m',$returnMode)
modifyModeStack(m',index)
[["TAGGEDreturn",0,u],m,e']
--% ELT
compElt: (%Form,%Mode,%Env) -> %Maybe %Triple
compElt(form,m,E) ==
form isnt ["elt",aDomain,anOp] => compForm(form,m,E)
aDomain="Lisp" =>
[anOp',m,E] where anOp'() == (anOp=$Zero => 0; anOp=$One => 1; anOp)
isDomainForm(aDomain,E) =>
E:= addDomain(aDomain,E)
mmList:= getModemapListFromDomain(anOp,0,aDomain,E)
modemap:=
n:=#mmList
1=n => mmList.(0)
0=n =>
return
stackMessage('"Operation %1b missing from domain: %2p",
[anOp,aDomain])
stackWarning('"more than 1 modemap for: %1 with dc = %2p ===> %3",
[anOp,aDomain,mmList])
mmList.(0)
[sig,[pred,val]]:= modemap
#sig^=2 and ^val is ["elt",:.] => nil --what does the second clause do ????
--+
val := genDeltaEntry [opOf anOp,:modemap]
convert([["call",val],first rest sig,E], m) --implies fn calls used to access constants
compForm(form,m,E)
--% HAS
compHas: (%Form,%Mode,%Env) -> %Maybe %Triple
compHas(pred is ["has",a,b],m,$e) ==
--b is (":",:.) => (.,.,E):= comp(b,$EmptyMode,E)
$e:= chaseInferences(pred,$e)
--pred':= ("has",a',b') := formatHas(pred)
predCode:= compHasFormat pred
coerce([predCode,$Boolean,$e],m)
--used in various other places to make the discrimination
compHasFormat (pred is ["has",olda,b]) ==
argl := rest $form
formals := TAKE(#argl,$FormalMapVariableList)
a := SUBLISLIS(argl,formals,olda)
[a,:.] := comp(a,$EmptyMode,$e) or return nil
a := SUBLISLIS(formals,argl,a)
b is ["ATTRIBUTE",c] => ["HasAttribute",a,["QUOTE",c]]
b is ["SIGNATURE",op,sig] =>
["HasSignature",a,
mkList [MKQ op,mkList [mkDomainConstructor type for type in sig]]]
isDomainForm(b,$EmptyEnvironment) => ["EQUAL",a,b]
["HasCategory",a,mkDomainConstructor b]
--% IF
compIf: (%Form,%Mode,%Env) -> %Maybe %Triple
compBoolean: (%Form,%Mode,%Env) -> %List
compFromIf: (%Form,%Mode,%Env) -> %Maybe %Triple
compIf(["IF",a,b,c],m,E) ==
[xa,ma,Ea,Einv]:= compBoolean(a,$Boolean,E) or return nil
[xb,mb,Eb]:= Tb:= compFromIf(b,m,Ea) or return nil
[xc,mc,Ec]:= Tc:= compFromIf(c,resolve(mb,m),Einv) or return nil
xb':= coerce(Tb,mc) or return nil
x:= ["IF",xa,quotify xb'.expr,quotify xc]
(returnEnv:= Env(xb'.env,Ec,xb'.expr,xc,E)) where
Env(bEnv,cEnv,b,c,E) ==
canReturn(b,0,0,true) =>
(canReturn(c,0,0,true) => intersectionEnvironment(bEnv,cEnv); bEnv)
canReturn(c,0,0,true) => cEnv
E
[x,mc,returnEnv]
canReturn(expr,level,exitCount,ValueFlag) == --SPAD: exit and friends
atom expr => ValueFlag and level=exitCount
(op:= first expr)="QUOTE" => ValueFlag and level=exitCount
op="TAGGEDexit" =>
expr is [.,count,data] => canReturn(data.expr,level,count,count=level)
level=exitCount and not ValueFlag => nil
op="SEQ" => or/[canReturn(u,level+1,exitCount,false) for u in rest expr]
op="TAGGEDreturn" => nil
op="CATCH" =>
[.,gs,data]:= expr
(findThrow(gs,data,level,exitCount,ValueFlag) => true) where
findThrow(gs,expr,level,exitCount,ValueFlag) ==
atom expr => nil
expr is ["THROW", =gs,data] => true
--this is pessimistic, but I know of no more accurate idea
expr is ["SEQ",:l] =>
or/[findThrow(gs,u,level+1,exitCount,ValueFlag) for u in l]
or/[findThrow(gs,u,level,exitCount,ValueFlag) for u in rest expr]
canReturn(data,level,exitCount,ValueFlag)
op = "COND" =>
level = exitCount =>
or/[canReturn(last u,level,exitCount,ValueFlag) for u in rest expr]
or/[or/[canReturn(u,level,exitCount,ValueFlag) for u in v]
for v in rest expr]
op="IF" =>
expr is [.,a,b,c]
if not canReturn(a,0,0,true) then
SAY "IF statement can not cause consequents to be executed"
pp expr
canReturn(a,level,exitCount,nil) or canReturn(b,level,exitCount,ValueFlag)
or canReturn(c,level,exitCount,ValueFlag)
--now we have an ordinary form
atom op => and/[canReturn(u,level,exitCount,ValueFlag) for u in expr]
op is ["XLAM",args,bods] =>
and/[canReturn(u,level,exitCount,ValueFlag) for u in expr]
systemErrorHere '"canReturn" --for the time being
compBoolean(p,m,E) ==
[p',m,E]:= comp(p,m,E) or return nil
[p',m,getSuccessEnvironment(p,E),getInverseEnvironment(p,E)]
getSuccessEnvironment(a,e) ==
-- the next four lines try to ensure that explicit special-case tests
-- prevent implicit ones from being generated
a is ["has",x,m] =>
IDENTP x and isDomainForm(m,$EmptyEnvironment) => put(x,"specialCase",m,e)
e
a is ["is",id,m] =>
IDENTP id and isDomainForm(m,$EmptyEnvironment) =>
e:=put(id,"specialCase",m,e)
currentProplist:= getProplist(id,e)
[.,.,e] := T := comp(m,$EmptyMode,e) or return nil -- duplicates compIs
newProplist:= consProplistOf(id,currentProplist,"value",[m,:rest removeEnv T])
addBinding(id,newProplist,e)
e
a is ["case",x,m] and IDENTP x =>
put(x,"condition",[a,:get(x,"condition",e)],e)
e
getInverseEnvironment(a,E) ==
atom a => E
[op,:argl]:= a
-- the next five lines try to ensure that explicit special-case tests
-- prevent implicit ones from being generated
op="has" =>
[x,m]:= argl
IDENTP x and isDomainForm(m,$EmptyEnvironment) => put(x,"specialCase",m,E)
E
a is ["case",x,m] and IDENTP x =>
--the next two lines are necessary to get 3-branched Unions to work
-- old-style unions, that is
(get(x,"condition",E) is [["OR",:oldpred]]) and member(a,oldpred) =>
put(x,"condition",LIST MKPF(delete(a,oldpred),"OR"),E)
getUnionMode(x,E) is ["Union",:l]
l':= delete(m,l)
for u in l' repeat
if u is ['_:,=m,:.] then l':= delete(u,l')
newpred:= MKPF([["case",x,m'] for m' in l'],"OR")
put(x,"condition",[newpred,:get(x,"condition",E)],E)
E
getUnionMode(x,e) ==
m:=
atom x => getmode(x,e)
return nil
isUnionMode(m,e)
isUnionMode(m,e) ==
m is ["Union",:.] => m
(m':= getmode(m,e)) is ["Mapping",["UnionCategory",:.]] => CADR m'
v:= get(RepIfRepHack m,"value",e) =>
(v.expr is ["Union",:.] => v.expr; nil)
nil
compFromIf(a,m,E) ==
a="%noBranch" => ["%noBranch",m,E]
true => comp(a,m,E)
quotify x == x
compImport: (%Form,%Mode,%Env) -> %Maybe %Triple
compImport(["import",:doms],m,e) ==
for dom in doms repeat e:=addDomain(dom,e)
["/throwAway",$NoValueMode,e]
--% Compilation of logical operators that may have a pre-defined
--% meaning, or may need special handling because or short-circuiting
--% etc.
++ compile a logical negation form `(not ...)'.
compNot: (%Form,%Mode,%Env) -> %Maybe %Triple
compNot(x,m,e) ==
x isnt ["not", y] => nil
-- ??? For the time being compiler values cannot handle operations
-- ??? selected through general modemaps, and their semantics
-- ??? are quite hardwired with their syntax.
-- ??? Eventually, we should not need to do this.
$normalizeTree => compIf(["IF",y,"false","true"],m,e)
compForm(x,m,e)
--% Case
compCase: (%Form,%Mode,%Env) -> %Maybe %Triple
compCase1: (%Form,%Mode,%Env) -> %Maybe %Triple
--Will the jerk who commented out these two functions please NOT do so
--again. These functions ARE needed, and case can NOT be done by
--modemap alone. The reason is that A case B requires to take A
--evaluated, but B unevaluated. Therefore a special function is
--required. You may have thought that you had tested this on "failed"
--etc., but "failed" evaluates to it's own mode. Try it on x case $
--next time.
-- An angry JHD - August 15th., 1984
compCase(["case",x,m'],m,e) ==
e:= addDomain(m',e)
T:= compCase1(x,m',e) => coerce(T,m)
nil
compCase1(x,m,e) ==
[x',m',e']:= comp(x,$EmptyMode,e) or return nil
u:=
[modemap
for (modemap := [map,cexpr]) in getModemapList("case",2,e')
| map is [.,=$Boolean,s,t] and modeEqual(maybeSpliceMode t,m)
and modeEqual(s,m')] or return nil
fn:= (or/[mm for (mm := [.,[cond,selfn]]) in u | cond=true]) or return nil
fn := genDeltaEntry ["case",:fn]
-- user-defined `case' functions really are binary, as opposed to
-- the compiler-synthetized versions for Union instances.
not isUnionMode(m',e') => [["call",fn,x',MKQ m],$Boolean,e']
[["call",fn,x'],$Boolean,e']
++ For `case' operation implemented in library, the second operand
++ (target type) is taken unevaluated. The corresponding parameter
++ type in the modemap was specified as quasiquotation. We
++ want to look at the actual type when comparing with modeEqual.
maybeSpliceMode: %Mode -> %Mode
maybeSpliceMode m ==
(m' := isQuasiquote m) => m'
m
compColon: (%Form,%Mode,%Env) -> %Maybe %Triple
compColon([":",f,t],m,e) ==
$insideExpressionIfTrue=true => compColonInside(f,m,e,t)
--if inside an expression, ":" means to convert to m "on faith"
$lhsOfColon: local:= f
t:=
atom t and (t':= assoc(t,getDomainsInScope e)) => t'
isDomainForm(t,e) and not $insideCategoryIfTrue =>
(if not member(t,getDomainsInScope e) then e:= addDomain(t,e); t)
isDomainForm(t,e) or isCategoryForm(t,e) => t
t is ["Mapping",m',:r] => t
STRINGP t => t -- literal flag types are OK
unknownTypeError t
t
f is ["LISTOF",:l] =>
(for x in l repeat T:= [.,.,e]:= compColon([":",x,t],m,e); T)
e:=
f is [op,:argl] and not (t is ["Mapping",:.]) =>
--for MPOLY--replace parameters by formal arguments: RDJ 3/83
newTarget:= EQSUBSTLIST(take(#argl,$FormalMapVariableList),
[(x is [":",a,m] => a; x) for x in argl],t)
signature:=
["Mapping",newTarget,:
[(x is [":",a,m] => m;
getmode(x,e) or systemErrorHere '"compColonOld") for x in argl]]
put(op,"mode",signature,e)
put(f,"mode",t,e)
if not $bootStrapMode and $insideFunctorIfTrue and
makeCategoryForm(t,e) is [catform,e] then
e:= put(f,"value",[genSomeVariable(),t,$noEnv],e)
["/throwAway",getmode(f,e),e]
unknownTypeError name ==
name:=
name is [op,:.] => op
name
stackAndThrow('"%1b is not a known type",[name])
compPretend: (%Form,%Mode,%Env) -> %Maybe %Triple
compPretend(["pretend",x,t],m,e) ==
e:= addDomain(t,e)
T:= comp(x,t,e) or comp(x,$EmptyMode,e) or return nil
t' := T.mode -- save this, in case we need to make suggestions
T:= [T.expr,t,T.env]
T':= coerce(T,m) =>
-- If the `pretend' wasn't necessary, we should advise user to use
-- less crude way of selecting expressions of thr `right type'.
if t' = t then
stackWarning('"pretend %1p -- should replace by @",[t])
T'
nil
compColonInside(x,m,e,m') ==
e:= addDomain(m',e)
T:= comp(x,$EmptyMode,e) or return nil
if (m'':=T.mode)=m' then warningMessage:= [":",m'," -- should replace by @"]
T:= [T.expr,m',T.env]
T':= coerce(T,m) =>
if m'' = m' then
stackWarning('": %1p -- should replace by @",[m'])
else
stackWarning('" : %1p -- replace by pretend", [m'])
T'
compIs: (%Form,%Mode,%Env) -> %Maybe %Triple
compIs(["is",a,b],m,e) ==
[aval,am,e] := comp(a,$EmptyMode,e) or
stackAndThrow('"Cannot determine the type of the expression %1b",[a])
not isCategoryForm(am,e) =>
stackAndThrow('"Expression %1b does not designate a domain",[a])
[bval,bm,e] := comp(b,$EmptyMode,e) or return nil
T:= [["domainEqual",aval,bval],$Boolean,e]
coerce(T,m)
--% Functions for coercion by the compiler
-- The function coerce is used by the old compiler for coercions.
-- The function coerceInteractive is used by the interpreter.
-- One should always call the correct function, since the represent-
-- ation of basic objects may not be the same.
coerce(T,m) ==
$InteractiveMode =>
keyedSystemError("S2GE0016",['"coerce",
'"function coerce called from the interpreter."])
if $useRepresentationHack then
rplac(CADR T,MSUBST("$",$Rep,CADR T))
T':= coerceEasy(T,m) => T'
T':= coerceSubset(T,m) => T'
T':= coerceHard(T,m) => T'
-- if from from coerceable, this coerce was just a trial coercion
-- from compFormWithModemap to filter through the modemaps
T.expr = "$fromCoerceable$" or isSomeDomainVariable m => nil
stackMessage('"Cannot coerce %1b of mode %2pb to mode %3pb",
[T.expr,T.mode,m])
coerceEasy: (%Triple,%Mode) -> %Maybe %Triple
coerceEasy(T,m) ==
m=$EmptyMode => T
m=$NoValueMode or m=$Void => [T.expr,m,T.env]
T.mode =m => T
T.mode =$NoValueMode => T
T.mode =$Exit =>
[["PROGN", T.expr, ["userError", '"Did not really exit."]],
m,T.env]
T.mode=$EmptyMode or modeEqualSubst(T.mode,m,T.env) =>
[T.expr,m,T.env]
coerceSubset: (%Triple,%Mode) -> %Maybe %Triple
coerceSubset([x,m,e],m') ==
isSubset(m,m',e) => [x,m',e]
m is ['SubDomain,=m',:.] => [x,m',e]
(pred:= LASSOC(opOf m',get(opOf m,'SubDomain,e))) and INTEGERP x and
-- obviously this is temporary
eval substitute(x,"#1",pred) => [x,m',e]
(pred:= isSubset(m',maxSuperType(m,e),e)) and INTEGERP x -- again temporary
and eval substitute(x,"*",pred) =>
[x,m',e]
nil
coerceHard: (%Triple,%Mode) -> %Maybe %Triple
coerceHard(T,m) ==
$e: local:= T.env
m':= T.mode
STRINGP m' and modeEqual(m,$String) => [T.expr,m,$e]
modeEqual(m',m) or
(get(m',"value",$e) is [m'',:.] or getmode(m',$e) is ["Mapping",m'']) and
modeEqual(m'',m) or
(get(m,"value",$e) is [m'',:.] or getmode(m,$e) is ["Mapping",m'']) and
modeEqual(m'',m') => [T.expr,m,T.env]
STRINGP T.expr and T.expr=m => [T.expr,m,$e]
isCategoryForm(m,$e) =>
$bootStrapMode = true => [T.expr,m,$e]
extendsCategoryForm(T.expr,T.mode,m) => [T.expr,m,$e]
coerceExtraHard(T,m)
(m' = "$" and m = $functorForm) or (m' = $functorForm and m = "$") =>
[T.expr,m,$e]
coerceExtraHard(T,m)
coerceExtraHard: (%Triple,%Mode) -> %Maybe %Triple
coerceExtraHard(T is [x,m',e],m) ==
T':= autoCoerceByModemap(T,m) => T'
isUnionMode(m',e) is ["Union",:l] and (t:= hasType(x,e)) and
member(t,l) and (T':= autoCoerceByModemap(T,t)) and
(T'':= coerce(T',m)) => T''
m' is ['Record,:.] and m = $Expression =>
[['coerceRe2E,x,['ELT,COPY m',0]],m,e]
belongsTo?(m',["UnionType"],e) and hasUniqueCaseView(x,m,e) =>
autoCoerceByModemap(T,m)
-- Domain instantiations are first class objects
m = $Domain =>
m' = $Category => nil
isCategoryForm(m',e) => [x,m',e]
nil
nil
++ returns true if mode `m' is known to belong to category `cat' in
++ the environment `e'. This function is different from its cousines
++ `ofCategory', or `has'. The latter perform runtime checks. Here,
++ we are interested in a static approximation. So, use with care.
belongsTo?(m,cat,e) ==
c := get(m,"mode",e)
c isnt ["Join",:cats] => nil
member(cat,cats)
coerceable(m,m',e) ==
m=m' => m
-- must find any free parameters in m
sl:= pmatch(m',m) => SUBLIS(sl,m')
coerce(["$fromCoerceable$",m,e],m') => m'
nil
coerceExit: (%Triple,%Mode) -> %Maybe %Triple
coerceExit([x,m,e],m') ==
m':= resolve(m,m')
x':= replaceExitEtc(x,catchTag:= MKQ GENSYM(),"TAGGEDexit",$exitMode)
coerce([["CATCH",catchTag,x'],m,e],m')
compAtSign: (%Form,%Mode,%Env) -> %Maybe %Triple
compAtSign(["@",x,m'],m,e) ==
e:= addDomain(m',e)
T:= comp(x,m',e) or return nil
coerce(T,m)
compCoerce: (%Form,%Mode,%Env) -> %Maybe %Triple
compCoerce1: (%Form,%Mode,%Env) -> %Maybe %Triple
coerceByModemap: (%Maybe %Triple,%Mode) -> %Maybe %Triple
autoCoerceByModemap: (%Maybe %Triple,%Mode) -> %Maybe %Triple
compCoerce(["::",x,m'],m,e) ==
e:= addDomain(m',e)
T:= compCoerce1(x,m',e) => coerce(T,m)
getmode(m',e) is ["Mapping",["UnionCategory",:l]] =>
T:= (or/[compCoerce1(x,m1,e) for m1 in l]) or return nil
coerce([T.expr,m',T.env],m)
compCoerce1(x,m',e) ==
T:= comp(x,m',e) or comp(x,$EmptyMode,e) or return nil
m1:=
STRINGP T.mode => $String
T.mode
m':=resolve(m1,m')
T:=[T.expr,m1,T.env]
T':= coerce(T,m') => T'
T':= coerceByModemap(T,m') => T'
pred:=isSubset(m',T.mode,e) =>
gg:=GENSYM()
pred:= substitute(gg,"*",pred)
code:= ['PROG1,["%LET",gg,T.expr], ['check_-subtype,pred,MKQ m',gg]]
[code,m',T.env]
coerceByModemap([x,m,e],m') ==
--+ modified 6/27 for new runtime system
u:=
[modemap
for (modemap:= [map,cexpr]) in getModemapList("coerce",1,e) | map is [.,t,
s] and (modeEqual(t,m') or isSubset(t,m',e))
and (modeEqual(s,m) or isSubset(m,s,e))] or return nil
--mm:= (or/[mm for (mm:=[.,[cond,.]]) in u | cond=true]) or return nil
mm:=first u -- patch for non-trival conditons
fn :=
genDeltaEntry ['coerce,:mm]
[["call",fn,x],m',e]
autoCoerceByModemap([x,source,e],target) ==
u:=
[modemap
for (modemap:= [map,cexpr]) in getModemapList("autoCoerce",1,e)
| map is [.,t,s] and modeEqual(t,target)
and modeEqual(s,source)] or return nil
fn:= (or/[mm for (mm := [.,[cond,selfn]]) in u | cond=true]) or return nil
source is ["Union",:l] and member(target,l) =>
(y:= get(x,"condition",e)) and (or/[u is ["case",., =target] for u in y])
=> [["call",genDeltaEntry ["autoCoerce", :fn],x],target,e]
x="$fromCoerceable$" => nil
stackMessage('"cannot coerce %1b of mode %2pb to %3pb without a case statement",
[x,source,target])
[["call",genDeltaEntry ["autoCoerce", :fn],x],target,e]
++ Compile a comma separated expression list. These typically are
++ tuple objects, or argument list in a call to a homogeneous
++ vararg operations.
compComma: (%Form,%Mode,%Env) -> %Maybe %Triple
compComma(form,m,e) ==
form isnt ["%Comma",:argl] => systemErrorHere "compComma"
Tl := [comp(a,$EmptyMode,e) or return "failed" for a in argl]
Tl = "failed" => nil
-- ??? Ideally, we would like to compile to a Cross type, then
-- convert to the target type. However, the current compiler and
-- runtime data structures are not regular enough in their interfaces;
-- so we make a special rule when compiling with a Tuple as target,
-- we do the convertion here (instead of calling convert). Semantically,
-- there should be no difference, but it makes the compiler code
-- less regular, with duplicated effort.
m is ["Tuple",t] =>
Tl' := [convert(T,t) or return "failed" for T in Tl]
Tl' = "failed" => nil
[["asTupleNew0", [T.expr for T in Tl']], m, e]
T := [["LIST2VEC", [T.expr for T in Tl]],
["Cross",:[T.mode for T in Tl]], e]
convert(T,m)
--% Very old resolve
-- should only be used in the old (preWATT) compiler
resolve(din,dout) ==
din=$NoValueMode or dout=$NoValueMode => $NoValueMode
dout=$EmptyMode => din
din^=dout and (STRINGP din or STRINGP dout) =>
modeEqual(dout,$String) => dout
modeEqual(din,$String) => nil
mkUnion(din,dout)
dout
modeEqual(x,y) ==
-- this is the late modeEqual
-- orders Unions
atom x or atom y => x=y
#x ^=#y => nil
x is ['Union,:xl] and y is ['Union,:yl] =>
for x1 in xl repeat
for y1 in yl repeat
modeEqual(x1,y1) =>
xl := delete(x1,xl)
yl := delete(y1,yl)
return nil
xl or yl => nil
true
(and/[modeEqual(u,v) for u in x for v in y])
modeEqualSubst(m1,m,e) ==
modeEqual(m1, m) => true
atom m1 => get(m1,"value",e) is [m',:.] and modeEqual(m',m)
m1 is [op,:l1] and m is [=op,:l2] and # l1 = # l2 =>
-- Above length test inserted JHD 4:47 on 15/8/86
-- Otherwise Records can get fouled up - consider expressIdealElt
-- in the DEFAULTS package
and/[modeEqualSubst(xm1,xm2,e) for xm1 in l1 for xm2 in l2]
nil
--% Categories
compCat(form is [functorName,:argl],m,e) ==
fn:= GETL(functorName,"makeFunctionList") or return nil
diagnoseUknownType(form,e)
[funList,e]:= FUNCALL(fn,form,form,e)
catForm:=
["Join",'(SetCategory),["CATEGORY","domain",:
[["SIGNATURE",op,sig] for [op,sig,.] in funList | op^="="]]]
--RDJ: for coercion purposes, it necessary to know it's a Set; I'm not
--sure if it uses any of the other signatures(see extendsCategoryForm)
[form,catForm,e]
--% APPLY MODEMAPS
compApplyModemap(form,modemap,$e,sl) ==
[op,:argl] := form --form to be compiled
[[mc,mr,:margl],:fnsel] := modemap --modemap we are testing
-- $e is the current environment
-- sl substitution list, nil means bottom-up, otherwise top-down
-- 0. fail immediately if #argl=#margl
if #argl^=#margl then return nil
-- 1. use modemap to evaluate arguments, returning failed if
-- not possible
lt:=
[[.,m',$e]:=
comp(y,g,$e) or return "failed" where
g:= SUBLIS(sl,m) where
sl:= pmatchWithSl(m',m,sl) for y in argl for m in margl]
lt="failed" => return nil
-- 2. coerce each argument to final domain, returning failed
-- if not possible
lt':= [coerce(y,d) or return "failed"
for y in lt for d in SUBLIS(sl,margl)]
lt'="failed" => return nil
-- 3. obtain domain-specific function, if possible, and return
--$bindings is bound by compMapCond
[f,$bindings]:= compMapCond(op,mc,sl,fnsel) or return nil
--+ can no longer trust what the modemap says for a reference into
--+ an exterior domain (it is calculating the displacement based on view
--+ information which is no longer valid; thus ignore this index and
--+ store the signature instead.
f is [op1,d,.] and member(op1,'(ELT CONST Subsumed)) =>
[genDeltaEntry [op,:modemap],lt',$bindings]
[f,lt',$bindings]
compMapCond(op,mc,$bindings,fnsel) ==
or/[compMapCond'(u,op,mc,$bindings) for u in fnsel]
compMapCond'([cexpr,fnexpr],op,dc,bindings) ==
compMapCond''(cexpr,dc) => compMapCondFun(fnexpr,op,dc,bindings)
stackMessage('"not known that %1pb has %2pb",[dc,cexpr])
compMapCond''(cexpr,dc) ==
cexpr=true => true
--cexpr = "true" => true
cexpr is ["AND",:l] => and/[compMapCond''(u,dc) for u in l]
cexpr is ["OR",:l] => or/[compMapCond''(u,dc) for u in l]
cexpr is ["not",u] => not compMapCond''(u,dc)
cexpr is ["has",name,cat] => (knownInfo cexpr => true; false)
--for the time being we'll stop here - shouldn't happen so far
--$disregardConditionIfTrue => true
--stackSemanticError(("not known that",'%b,name,
-- '%d,"has",'%b,cat,'%d),nil)
--now it must be an attribute
member(["ATTRIBUTE",dc,cexpr],get("$Information","special",$e)) => true
--for the time being we'll stop here - shouldn't happen so far
stackMessage('"not known that %1pb has %2pb",[dc,cexpr])
false
compMapCondFun(fnexpr,op,dc,bindings) ==
[fnexpr,bindings]
--% Register compilers for special forms.
-- Those compilers are on the `SPECIAL' property of the corresponding
-- special form operator symbol.
for x in [["|", :"compSuchthat"],_
["@", :"compAtSign"],_
[":", :"compColon"],_
["::", :"compCoerce"],_
["QUOTE", :"compQuote"],_
["add", :"compAdd"],_
["CAPSULE", :"compCapsule"],_
["case", :"compCase"],_
["CATEGORY", :"compCategory"],_
["COLLECT", :"compRepeatOrCollect"],_
["COLLECTV", :"compCollectV"],_
["CONS", :"compCons"],_
["construct", :"compConstruct"],_
["DEF", :"compDefine"],_
["elt", :"compElt"],_
["Enumeration", :"compCat"],_
["exit", :"compExit"],_
["has", :"compHas"],_
["IF", : "compIf"],_
["import", :"compImport"],_
["is", :"compIs"],_
["Join", :"compJoin"],_
["leave", :"compLeave"],_
["%LET", :"compSetq"],_
["MDEF", :"compMacro"],_
["not", :"compNot"],_
["pretend", :"compPretend"],_
["Record", :"compCat"],_
["RecordCategory", :"compConstructorCategory"],_
["REDUCE", :"compReduce"],_
["REPEAT", :"compRepeatOrCollect"],_
["return", :"compReturn"],_
["SEQ", :"compSeq"],_
["SETQ", :"compSetq"],_
["SubDomain", :"compSubDomain"],_
["SubsetCategory", :"compSubsetCategory"],_
["Union", :"compCat"],_
["Mapping", :"compCat"],_
["UnionCategory", :"compConstructorCategory"],_
["where", :"compWhere"],_
["%Comma",:"compComma"],_
["[||]", :"compileQuasiquote"]] repeat
MAKEPROP(first x, "SPECIAL", rest x)
|