1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
|
\begin{page}{manpageXXonline}{NAG On-line Documentation: online}
\beginscroll
\begin{verbatim}
DOC INTRO(3NAG) Foundation Library (12/10/92) DOC INTRO(3NAG)
Introduction to NAG On-Line Documentation
The on-line documentation for the NAG Foundation Library has been
generated automatically from the same base material used to
create the printed Reference Manual. To make the documentation
readable on the widest range of machines, only the basic set of
ascii characters has been used.
Certain mathematical symbols have been constructed using plain
ascii characters:
integral signs /
|
/
summation signs --
>
--
square root signs ----
/
\/
Large brackets are constructed using vertical stacks of the
equivalent ascii character:
( ) [ ] { } |
( ) [ ] { } |
( ) [ ] { } |
Fractions are represented as:
a
---
x+1
Greek letters are represented by their names enclosed in round
brackets:
(alpha) (beta) (gamma) .....
(Alpha) (Beta) (Gamma) .....
Some characters are accented using:
^ ~
X X X
Other mathematical symbols are represented as follows:
* times
<=> left-right arrow
<- left arrow
~ similar to
~= similar or equal to
== equivalent to
>= greater than or equal to
<= less than or equal to
>> much greater than
<< much less than
>~ greater than or similar to
/= not equal to
dd partial derivative
+- plus or minus
(nabla) Nabla
\end{verbatim}
\endscroll
\end{page}
\begin{page}{manpageXXsummary}{NAG On-line Documentation: summary}
\beginscroll
\begin{verbatim}
SUMMARY(3NAG) Foundation Library (12/10/92) SUMMARY(3NAG)
Introduction List of Routines
List of Routines
The NAG Foundation Library contains three categories of routines
which can be called by users. They are listed separately in the
three sections below.
Fully Documented Routines
254 routines, for each of which an individual routine
document is provided. These are regarded as the primary
contents of the Foundation Library.
Fundamental Support Routines
83 comparatively simple routines which are documented in
compact form in the relevant Chapter Introductions (F06,
X01, X02).
Routines from the NAG Fortran Library
An additional 167 routines from the NAG Fortran Library,
which are used as auxiliaries in the Foundation Library.
They are not documented in this publication, but can be
called if you are already familiar with their use in the
Fortran Library. Only their names are given here.
Note: all the routines in the above categories have names ending
in 'F'. Occasionally this publication may refer to routines whose
names end in some other letter (e.g. 'Z', 'Y', 'X'). These are
auxiliary routines whose names may be passed as parameters to a
Foundation Library routine; you only need to know their names,
not how to call them directly.
Fully Documented Routines
The Foundation Library contains 254 user-callable routines, for
each of which an individual routine document is provided, in the
following chapters:
C02 -- Zeros of Polynomials
C02AFF All zeros of complex polynomial, modified Laguerre method
C02AGF All zeros of real polynomial, modified Laguerre method
C05 -- Roots of One or More Transcendental Equations
C05ADF Zero of continuous function in given interval, Bus and
Dekker algorithm
C05NBF Solution of system of nonlinear equations using function
values only
C05PBF Solution of system of nonlinear equations using 1st
derivatives
C05ZAF Check user's routine for calculating 1st derivatives
C06 -- Summation of Series
C06EAF Single 1-D real discrete Fourier transform, no extra
workspace
C06EBF Single 1-D Hermitian discrete Fourier transform, no extra
workspace
C06ECF Single 1-D complex discrete Fourier transform, no extra
workspace
C06EKF Circular convolution or correlation of two real vectors,
no extra workspace
C06FPF Multiple 1-D real discrete Fourier transforms
C06FQF Multiple 1-D Hermitian discrete Fourier transforms
C06FRF Multiple 1-D complex discrete Fourier transforms
C06FUF 2-D complex discrete Fourier transform
C06GBF Complex conjugate of Hermitian sequence
C06GCF Complex conjugate of complex sequence
C06GQF Complex conjugate of multiple Hermitian sequences
C06GSF Convert Hermitian sequences to general complex sequences
D01 -- Quadrature
D01AJF 1-D quadrature, adaptive, finite interval, strategy due
to Piessens and de Doncker, allowing for badly-behaved
integrands
D01AKF 1-D quadrature, adaptive, finite interval, method
suitable for oscillating functions
D01ALF 1-D quadrature, adaptive, finite interval, allowing for
singularities at user-specified break-points
D01AMF 1-D quadrature, adaptive, infinite or semi-infinite
interval
D01ANF 1-D quadrature, adaptive, finite interval, weight
function cos((omega)x) or sin((omega)x)
D01APF 1-D quadrature, adaptive, finite interval, weight
function with end-point singularities of algebraico-
logarithmic type
D01AQF 1-D quadrature, adaptive, finite interval, weight
function 1/(x-c), Cauchy principal value (Hilbert
transform)
D01ASF 1-D quadrature, adaptive, semi-infinite interval, weight
function cos((omega)x) or sin((omega)x)
D01BBF Weights and abscissae for Gaussian quadrature rules
D01FCF Multi-dimensional adaptive quadrature over hyper-
rectangle
D01GAF 1-D quadrature, integration of function defined by data
values, Gill-Miller method
D01GBF Multi-dimensional quadrature over hyper-rectangle, Monte
Carlo method
D02 -- Ordinary Differential Equations
D02BBF ODEs, IVP, Runge-Kutta-Merson method, over a range,
intermediate output
D02BHF ODEs, IVP, Runge-Kutta-Merson method, until function of
solution is zero
D02CJF ODEs, IVP, Adams method, until function of solution is
zero, intermediate output
D02EJF ODEs, stiff IVP, BDF method, until function of solution
is zero, intermediate output
D02GAF ODEs, boundary value problem, finite difference technique
with deferred correction, simple nonlinear problem
D02GBF ODEs, boundary value problem, finite difference technique
with deferred correction, general linear problem
D02KEF 2nd order Sturm-Liouville problem, regular/singular
system, finite/infinite range, eigenvalue and
eigenfunction, user-specified break-points
D02RAF ODEs, general nonlinear boundary value problem, finite
difference technique with deferred correction,
continuation facility
D03 -- Partial Differential Equations
D03EDF Elliptic PDE, solution of finite difference equations by
a multigrid technique
D03EEF Discretize a 2nd order elliptic PDE on a rectangle
D03FAF Elliptic PDE, Helmholtz equation, 3-D Cartesian co-
ordinates
E01 -- Interpolation
E01BAF Interpolating functions, cubic spline interpolant, one
variable
E01BEF Interpolating functions, monotonicity-preserving,
piecewise cubic Hermite, one variable
E01BFF Interpolated values, interpolant computed by E01BEF,
function only, one variable
E01BGF Interpolated values, interpolant computed by E01BEF,
function and 1st derivative, one variable
E01BHF Interpolated values, interpolant computed by E01BEF,
definite integral, one variable
E01DAF Interpolating functions, fitting bicubic spline, data on
rectangular grid
E01SAF Interpolating functions, method of Renka and Cline, two
variables
E01SBF Interpolated values, evaluate interpolant computed by
E01SAF, two variables
E01SEF Interpolating functions, modified Shepard's method, two
variables
E01SFF Interpolated values, evaluate interpolant computed by
E01SEF, two variables
E02 -- Curve and Surface Fitting
E02ADF Least-squares curve fit, by polynomials, arbitrary data
points
E02AEF Evaluation of fitted polynomial in one variable from
Chebyshev series form (simplified parameter list)
E02AGF Least-squares polynomial fit, values and derivatives may
be constrained, arbitrary data points,
E02AHF Derivative of fitted polynomial in Chebyshev series form
E02AJF Integral of fitted polynomial in Chebyshev series form
E02AKF Evaluation of fitted polynomial in one variable, from
Chebyshev series form
E02BAF Least-squares curve cubic spline fit (including
interpolation)
E02BBF Evaluation of fitted cubic spline, function only
E02BCF Evaluation of fitted cubic spline, function and
derivatives
E02BDF Evaluation of fitted cubic spline, definite integral
E02BEF Least-squares cubic spline curve fit, automatic knot
placement
E02DAF Least-squares surface fit, bicubic splines
E02DCF Least-squares surface fit by bicubic splines with
automatic knot placement, data on rectangular grid
E02DDF Least-squares surface fit by bicubic splines with
automatic knot placement, scattered data
E02DEF Evaluation of a fitted bicubic spline at a vector of
points
E02DFF Evaluation of a fitted bicubic spline at a mesh of points
E02GAF L -approximation by general linear function
1
E02ZAF Sort 2-D data into panels for fitting bicubic splines
E04 -- Minimizing or Maximizing a Function
E04DGF Unconstrained minimum, pre-conditioned conjugate gradient
algorithm, function of several variables using 1st
derivatives
E04DJF Read optional parameter values for E04DGF from external
file
E04DKF Supply optional parameter values to E04DGF
E04FDF Unconstrained minimum of a sum of squares, combined
Gauss-Newton and modified Newton algorithm using function
values only
E04GCF Unconstrained minimum of a sum of squares, combined
Gauss-Newton and quasi-Newton algorithm, using 1st
derivatives
E04JAF Minimum, function of several variables, quasi-Newton
algorithm, simple bounds, using function values only
E04MBF Linear programming problem
E04NAF Quadratic programming problem
E04UCF Minimum, function of several variables, sequential QP
method, nonlinear constraints, using function values and
optionally 1st derivatives
E04UDF Read optional parameter values for E04UCF from external
file
E04UEF Supply optional parameter values to E04UCF
E04YCF Covariance matrix for nonlinear least-squares problem
F01 -- Matrix Factorizations
F01BRF LU factorization of real sparse matrix
F01BSF LU factorization of real sparse matrix with known
sparsity pattern
T
F01MAF LL factorization of real sparse symmetric positive-
definite matrix
T
F01MCF LDL factorization of real symmetric positive-definite
variable-bandwidth matrix
F01QCF QR factorization of real m by n matrix (m>=n)
T
F01QDF Operations with orthogonal matrices, compute QB or Q B
after factorization by F01QCF
F01QEF Operations with orthogonal matrices, form columns of Q
after factorization by F01QCF
F01RCF QR factorization of complex m by n matrix (m>=n)
H
F01RDF Operations with unitary matrices, compute QB or Q B after
factorization by F01RCF
F01REF Operations with unitary matrices, form columns of Q after
factorization by F01RCF
F02 -- Eigenvalues and Eigenvectors
F02AAF All eigenvalues of real symmetric matrix
F02ABF All eigenvalues and eigenvectors of real symmetric matrix
F02ADF All eigenvalues of generalized real symmetric-definite
eigenproblem
F02AEF All eigenvalues and eigenvectors of generalized real
symmetric-definite eigenproblem
F02AFF All eigenvalues of real matrix
F02AGF All eigenvalues and eigenvectors of real matrix
F02AJF All eigenvalues of complex matrix
F02AKF All eigenvalues and eigenvectors of complex matrix
F02AWF All eigenvalues of complex Hermitian matrix
F02AXF All eigenvalues and eigenvectors of complex Hermitian
matrix
F02BBF Selected eigenvalues and eigenvectors of real symmetric
matrix
F02BJF All eigenvalues and optionally eigenvectors of
generalized eigenproblem by QZ algorithm, real matrices
F02FJF Selected eigenvalues and eigenvectors of sparse symmetric
eigenproblem
F02WEF SVD of real matrix
F02XEF SVD of complex matrix
F04 -- Simultaneous Linear Equations
F04ADF Approximate solution of complex simultaneous linear
equations with multiple right-hand sides
F04ARF Approximate solution of real simultaneous linear
equations, one right-hand side
F04ASF Accurate solution of real symmetric positive-definite
simultaneous linear equations, one right-hand side
F04ATF Accurate solution of real simultaneous linear equations,
one right-hand side
F04AXF Approximate solution of real sparse simultaneous linear
equations (coefficient matrix already factorized by
F01BRF or F01BSF)
F04FAF Approximate solution of real symmetric positive-definite
tridiagonal simultaneous linear equations, one right-hand
side
F04JGF Least-squares (if rank = n) or minimal least-squares (if
rank <n) solution of m real equations in n unknowns, rank
<=n, m>=n
F04MAF Real sparse symmetric positive-definite simultaneous
linear equations (coefficient matrix already factorized)
F04MBF Real sparse symmetric simultaneous linear equations
F04MCF Approximate solution of real symmetric positive-definite
variable-bandwidth simultaneous linear equations
(coefficient matrix already factorized)
F04QAF Sparse linear least-squares problem, m real equations in
n unknowns
F07 -- Linear Equations (LAPACK)
F07ADF (DGETRF) LU factorization of real m by n matrix
F07AEF (DGETRS) Solution of real system of linear equations,
multiple right-hand sides, matrix already factorized by
F07ADF
F07FDF (DPOTRF) Cholesky factorization of real symmetric
positive-definite matrix
F07FEF (DPOTRS) Solution of real symmetric positive-definite
system of linear equations, multiple right-hand sides,
matrix already factorized by F07FDF
G01 -- Simple Calculations on Statistical Data
G01AAF Mean, variance, skewness, kurtosis etc, one variable,
from raw data
G01ADF Mean, variance, skewness, kurtosis etc, one variable,
from frequency table
G01AEF Frequency table from raw data
G01AFF Two-way contingency table analysis, with (chi) /Fisher's
exact test
G01ALF Computes a five-point summary (median, hinges and
extremes)
G01ARF Constructs a stem and leaf plot
G01EAF Computes probabilities for the standard Normal
distribution
G01EBF Computes probabilities for Student's t-distribution
2
G01ECF Computes probabilities for (chi) distribution
G01EDF Computes probabilities for F-distribution
G01EEF Computes upper and lower tail probabilities and
probability density function for the beta distribution
G01EFF Computes probabilities for the gamma distribution
G01FAF Computes deviates for the standard Normal distribution
G01FBF Computes deviates for Student's t-distribution
2
G01FCF Computes deviates for the (chi) distribution
G01FDF Computes deviates for the F-distribution
G01FEF Computes deviates for the beta distribution
G01FFF Computes deviates for the gamma distribution
G01HAF Computes probabilities for the bivariate Normal
distribution
G02 -- Correlation and Regression Analysis
G02BNF Kendall/Spearman non-parametric rank correlation
coefficients, no missing values, overwriting input data
G02BQF Kendall/Spearman non-parametric rank correlation
coefficients, no missing values, preserving input data
G02BXF Computes (optionally weighted) correlation and covariance
matrices
G02CAF Simple linear regression with constant term, no missing
values
G02DAF Fits a general (multiple) linear regression model
G02DGF Fits a general linear regression model for new dependent
variable
G02DNF Computes estimable function of a general linear
regression model and its standard error
G02FAF Calculates standardized residuals and influence
statistics
G02GBF Fits a generalized linear model with binomial errors
G02GCF Fits a generalized linear model with Poisson errors
G03 -- Multivariate Methods
G03AAF Performs principal component analysis
G03ADF Performs canonical correlation analysis
G03BAF Computes orthogonal rotations for loading matrix,
generalized orthomax criterion
G05 -- Random Number Generators
G05CAF Pseudo-random double precision numbers, uniform
distribution over (0,1)
G05CBF Initialise random number generating routines to give
repeatable sequence
G05CCF Initialise random number generating routines to give non-
repeatable sequence
G05CFF Save state of random number generating routines
G05CGF Restore state of random number generating routines
G05DDF Pseudo-random double precision numbers, Normal
distribution
G05DFF Pseudo-random double precision numbers, Cauchy
distribution
G05DPF Pseudo-random double precision numbers, Weibull
distribution
G05DYF Pseudo-random integer from uniform distribution
G05DZF Pseudo-random logical (boolean) value
G05EAF Set up reference vector for multivariate Normal
distribution
G05ECF Set up reference vector for generating pseudo-random
integers, Poisson distribution
G05EDF Set up reference vector for generating pseudo-random
integers, binomial distribution
G05EHF Pseudo-random permutation of an integer vector
G05EJF Pseudo-random sample from an integer vector
G05EXF Set up reference vector from supplied cumulative
distribution function or probability distribution
function
G05EYF Pseudo-random integer from reference vector
G05EZF Pseudo-random multivariate Normal vector from reference
vector
G05FAF Generates a vector of pseudo-random numbers from a
uniform distribution
G05FBF Generates a vector of pseudo-random numbers from a
(negative) exponential distribution
G05FDF Generates a vector of pseudo-random numbers from a Normal
distribution
G05FEF Generates a vector of pseudo-random numbers from a beta
distribution
G05FFF Generates a vector of pseudo-random numbers from a gamma
distribution
G05HDF Generates a realisation of a multivariate time series
from a VARMA model
G08 -- Nonparameteric Statistics
G08AAF Sign test on two paired samples
G08ACF Median test on two samples of unequal size
G08AEF Friedman two-way analysis of variance on k matched
samples
G08AFF Kruskal-Wallis one-way analysis of variance on k samples
of unequal size
G08AGF Performs the Wilcoxon one sample (matched pairs) signed
rank test
G08AHF Performs the Mann-Whitney U test on two independent
samples
G08AJF Computes the exact probabilities for the Mann-Whitney U
statistic, no ties in pooled sample
G08AKF Computes the exact probabilities for the Mann-Whitney U
statistic, ties in pooled sample
2
G08CGF Performs the (chi) goodness of fit test, for standard
continuous distributions
G13 -- Time Series Analysis
G13AAF Univariate time series, seasonal and non-seasonal
differencing
G13ABF Univariate time series, sample autocorrelation function
G13ACF Univariate time series, partial autocorrelations from
autocorrelations
G13ADF Univariate time series, preliminary estimation, seasonal
ARIMA model
G13AFF Univariate time series, estimation, seasonal ARIMA model
G13AGF Univariate time series, update state set for forecasting
G13AHF Univariate time series, forecasting from state set
G13AJF Univariate time series, state set and forecasts, from
fully specified seasonal ARIMA model
G13ASF Univariate time series, diagnostic checking of residuals,
following G13AFF
G13BAF Multivariate time series, filtering (pre-whitening) by an
ARIMA model
G13BCF Multivariate time series, cross correlations
G13BDF Multivariate time series, preliminary estimation of
transfer function model
G13BEF Multivariate time series, estimation of multi-input model
G13BJF Multivariate time series, state set and forecasts from
fully specified multi-input model
G13CBF Univariate time series, smoothed sample spectrum using
spectral smoothing by the trapezium frequency (Daniell)
window
G13CDF Multivariate time series, smoothed sample cross spectrum
using spectral smoothing by the trapezium frequency
(Daniell) window
M01 -- Sorting
M01CAF Sort a vector, double precision numbers
M01DAF Rank a vector, double precision numbers
M01DEF Rank rows of a matrix, double precision numbers
M01DJF Rank columns of a matrix, double precision numbers
M01EAF Rearrange a vector according to given ranks, double
precision numbers
M01ZAF Invert a permutation
S -- Approximations of Special Functions
z
S01EAF Complex exponential, e
S13AAF Exponential integral E (x)
1
S13ACF Cosine integral Ci(x)
S13ADF Sine integral Si(x)
S14AAF Gamma function
S14ABF Log Gamma function
S14BAF Incomplete gamma functions P(a,x) and Q(a,x)
S15ADF Complement of error function erfc x
S15AEF Error function erf x
S17ACF Bessel function Y (x)
0
S17ADF Bessel function Y (x)
1
S17AEF Bessel function J (x)
0
S17AFF Bessel function J (x)
1
S17AGF Airy function Ai(x)
S17AHF Airy function Bi(x)
S17AJF Airy function Ai'(x)
S17AKF Airy function Bi'(x)
S17DCF Bessel functions Y (z), real a>=0, complex z,
(nu)+a
(nu)=0,1,2,...
S17DEF Bessel functions J (z), real a>=0, complex z,
(nu)+a
(nu)=0,1,2,...
S17DGF Airy functions Ai(z) and Ai'(z), complex z
S17DHF Airy functions Bi(z) and Bi'(z), complex z
(j)
S17DLF Hankel functions H (z), j=1,2, real a>=0, complex z,
(nu)+a
(nu)=0,1,2,...
S18ACF Modified Bessel function K (x)
0
S18ADF Modified Bessel function K (x)
1
S18AEF Modified Bessel function I (x)
0
S18AFF Modified Bessel function I (x)
1
S18DCF Modified Bessel functions K (z), real a>=0, complex
(nu)+a
z, (nu)=0,1,2,...
S18DEF Modified Bessel functions I (z), real a>=0, complex
(nu)+a
z, (nu)=0,1,2,...
S19AAF Kelvin function ber x
S19ABF Kelvin function bei x
S19ACF Kelvin function ker x
S19ADF Kelvin function kei x
S20ACF Fresnel integral S(x)
S20ADF Fresnel integral C(x)
S21BAF Degenerate symmetrised elliptic integral of 1st kind
R (x,y)
C
S21BBF Symmetrised elliptic integral of 1st kind R (x,y,z)
F
S21BCF Symmetrised elliptic integral of 2nd kind R (x,y,z)
D
S21BDF Symmetrised elliptic integral of 3rd kind R (x,y,z,r)
J
X04 -- Input/Output Utilities
X04AAF Return or set unit number for error messages
X04ABF Return or set unit number for advisory messages
X04CAF Print a real general matrix
X04DAF Print a complex general matrix
X05 -- Date and Time Utilities
X05AAF Return date and time as an array of integers
X05ABF Convert array of integers representing date and time to
character string
X05ACF Compare two character strings representing date and time
X05BAF Return the CPU time
Fundamental Support Routines
The following fundamental support routines are provided and are
documented in compact form in the relevant chapter introductory
material:
F06 -- Linear Algebra Support Routines
F06AAF (DROTG) Generate real plane rotation
F06EAF (DDOT) Dot product of two real vectors
F06ECF (DAXPY) Add scalar times real vector to real vector
F06EDF (DSCAL) Multiply real vector by scalar
F06EFF (DCOPY) Copy real vector
F06EGF (DSWAP) Swap two real vectors
F06EJF (DNRM2) Compute Euclidean norm of real vector
F06EKF (DASUM) Sum the absolute values of real vector elements
F06EPF (DROT) Apply real plane rotation
F06GAF (ZDOTU) Dot product of two complex vectors, unconjugated
F06GBF (ZDOTC) Dot product of two complex vectors, conjugated
F06GCF (ZAXPY) Add scalar times complex vector to complex vector
F06GDF (ZSCAL) Multiply complex vector by complex scalar
F06GFF (ZCOPY) Copy complex vector
F06GGF (ZSWAP) Swap two complex vectors
F06JDF (ZDSCAL) Multiply complex vector by real scalar
F06JJF (DZNRM2) Compute Euclidean norm of complex vector
F06JKF (DZASUM) Sum the absolute values of complex vector
elements
F06JLF (IDAMAX) Index, real vector element with largest absolute
value
F06JMF (IZAMAX) Index, complex vector element with largest
absolute value
F06PAF (DGEMV) Matrix-vector product, real rectangular matrix
F06PBF (DGBMV) Matrix-vector product, real rectangular band
matrix
F06PCF (DSYMV) Matrix-vector product, real symmetric matrix
F06PDF (DSBMV) Matrix-vector product, real symmetric band matrix
F06PEF (DSPMV) Matrix-vector product, real symmetric packed
matrix
F06PFF (DTRMV) Matrix-vector product, real triangular matrix
F06PGF (DTBMV) Matrix-vector product, real triangular band
matrix
F06PHF (DTPMV) Matrix-vector product, real triangular packed
matrix
F06PJF (DTRSV) System of equations, real triangular matrix
F06PKF (DTBSV) System of equations, real triangular band matrix
F06PLF (DTPSV) System of equations, real triangular packed
matrix
F06PMF (DGER) Rank-1 update, real rectangular matrix
F06PPF (DSYR) Rank-1 update, real symmetric matrix
F06PQF (DSPR) Rank-1 update, real symmetric packed matrix
F06PRF (DSYR2) Rank-2 update, real symmetric matrix
F06PSF (DSPR2) Rank-2 update, real symmetric packed matrix
F06SAF (ZGEMV) Matrix-vector product, complex rectangular matrix
F06SBF (ZGBMV) Matrix-vector product, complex rectangular band
matrix
F06SCF (ZHEMV) Matrix-vector product, complex Hermitian matrix
F06SDF (ZHBMV) Matrix-vector product, complex Hermitian band
matrix
F06SEF (ZHPMV) Matrix-vector product, complex Hermitian packed
matrix
F06SFF (ZTRMV) Matrix-vector product, complex triangular matrix
F06SGF (ZTBMV) Matrix-vector product, complex triangular band
matrix
F06SHF (ZTPMV) Matrix-vector product, complex triangular packed
matrix
F06SJF (ZTRSV) System of equations, complex triangular matrix
F06SKF (ZTBSV) System of equations, complex triangular band
matrix
F06SLF (ZTPSV) System of equations, complex triangular packed
matrix
F06SMF (ZGERU) Rank-1 update, complex rectangular matrix,
unconjugated vector
F06SNF (ZGERC) Rank-1 update, complex rectangular matrix,
conjugated vector
F06SPF (ZHER) Rank-1 update, complex Hermitian matrix
F06SQF (ZHPR) Rank-1 update, complex Hermitian packed matrix
F06SRF (ZHER2) Rank-2 update, complex Hermitian matrix
F06SSF (ZHPR2) Rank-2 update, complex Hermitian packed matrix
F06YAF (DGEMM) Matrix-matrix product, two real rectangular
matrices
F06YCF (DSYMM) Matrix-matrix product, one real symmetric matrix,
one real rectangular matrix
F06YFF (DTRMM) Matrix-matrix product, one real triangular
matrix, one real rectangular matrix
F06YJF (DTRSM) Solves a system of equations with multiple right-
hand sides, real triangular coefficient matrix
F06YPF (DSYRK) Rank-k update of a real symmetric matrix
F06YRF (DSYR2K) Rank-2k update of a real symmetric matrix
F06ZAF (ZGEMM) Matrix-matrix product, two complex rectangular
matrices
F06ZCF (ZHEMM) Matrix-matrix product, one complex Hermitian
matrix, one complex rectangular matrix
F06ZFF (ZTRMM) Matrix-matrix product, one complex triangular
matrix, one complex rectangular matrix
F06ZJF (ZTRSM) Solves system of equations with multiple right-
hand sides, complex triangular coefficient matrix
F06ZPF (ZHERK) Rank-k update of a complex Hermitian matrix
F06ZRF (ZHER2K) Rank-2k update of a complex Hermitian matrix
F06ZTF (ZSYMM) Matrix-matrix product, one complex symmetric
matrix, one complex rectangular matrix
F06ZUF (ZSYRK) Rank-k update of a complex symmetric matrix
F06ZWF (ZSYR2K) Rank-2k update of a complex symmetric matrix
X01 -- Mathematical Constants
X01AAF (pi)
X01ABF Euler's constant, (gamma)
X02 -- Machine Constants
X02AHF Largest permissible argument for SIN and COS
X02AJF Machine precision
X02AKF Smallest positive model number
X02ALF Largest positive model number
X02AMF Safe range of floating-point arithmetic
X02ANF Safe range of complex floating-point arithmetic
X02BBF Largest representable integer
X02BEF Maximum number of decimal digits that can be represented
X02BHF Parameter of floating-point arithmetic model, b
X02BJF Parameter of floating-point arithmetic model, p
X02BKF Parameter of floating-point arithmetic model, e
min
X02BLF Parameter of floating-point arithmetic model, e
max
X02DJF Parameter of floating-point arithmetic model, ROUNDS
Routines from the NAG Fortran Library
A number of routines from the NAG Fortran Library are used in the
Foundation Library as auxiliaries and are not documented here:
A00AAF
A02AAF A02ABF A02ACF
C02AJF
C05AZF C05NCF C05PCF
C06FAF C06FBF C06FCF C06FFF C06FJF C06FKF
C06HAF C06HBF C06HCF C06HDF
D02CBF D02CHF D02NMF D02NSF D02NVF D02PAF
D02XAF D02XKF D02YAF D02ZAF
E02AFF
E04GBF E04GEF E04YAF
F01ADF F01AEF F01AFF F01AGF F01AHF F01AJF
F01AKF F01AMF F01APF F01ATF F01AUF F01AVF
F01AWF F01AXF F01BCF F01BTF F01CRF F01LBF
F01LZF F01QAF F01QFF F01QGF F01QJF F01QKF
F01RFF F01RGF F01RJF F01RKF
F02AMF F02ANF F02APF F02AQF F02AVF F02AYF
F02BEF F02SWF F02SXF F02SYF F02SZF F02UWF
F02UXF F02UYF F02WDF F02WUF F02XUF
F03AAF F03ABF F03AEF F03AFF
F04AAF F04AEF F04AFF F04AGF F04AHF F04AJF
F04AMF F04ANF F04AYF F04LDF F04YAF F04YCF
F06BAF F06BCF F06BLF F06BMF F06BNF F06CAF
F06CCF F06CLF F06DBF F06DFF F06FBF F06FCF
F06FDF F06FGF F06FJF F06FLF F06FPF F06FQF
F06FRF F06FSF F06HBF F06HGF F06HQF F06HRF
F06KFF F06KJF F06KLF F06QFF F06QHF F06QKF
F06QRF F06QSF F06QTF F06QVF F06QWF F06QXF
F06RAF F06RJF F06TFF F06THF F06TTF F06TXF
F06VJF F06VKF F06VXF
F07AGF F07AHF F07AJF F07FGF F07FHF F07FJF
F07TJF
G01CEF
G02BAF G02BUF G02BWF G02DDF
G13AEF
M01CBF M01CCF M01DBF M01DCF M01DFF M01ZBF
P01ABF P01ACF
S01BAF S07AAF S15ABF
X03AAF
X04BAF X04BBF X04CBF X04DBF
\end{verbatim}
\endscroll
\end{page}
\begin{page}{manpageXXintro}{NAG On-line Documentation: intro}
\beginscroll
\begin{verbatim}
INTRO(3NAG) Foundation Library (12/10/92) INTRO(3NAG)
Introduction Essential Introduction
Essential Introduction to the NAG Foundation Library
This document is essential reading for any prospective user of
the Library.
This document appears in both the Handbook and the Reference
Manual for the NAG Foundation Library, but with a different
Section 3 to describe the different forms of routine
documentation in the two publications.
1. The Library and its Documentation
1.1. Structure of the Library
1.2. Structure of the Documentation
1.3. On-line Documentation
1.4. Implementations of the Library
1.5. Library Identification
1.6. Fortran Language Standards
2. Using the Library
2.1. General Advice
2.2. Programming Advice
2.3. Error handling and the Parameter IFAIL
2.4. Input/output in the Library
2.5. Auxiliary Routines
3. Using the Reference Manual
3.1. General Guidance
3.2. Structure of Routine Documents
3.3. Specifications of Parameters
3.3.1. Classification of Parameters
3.3.2. Constraints and Suggested Values
3.3.3. Array Parameters
3.4. Implementation-dependent Information
3.5. Example Programs and Results
3.6. Summary for New Users
4. Relationship between the Foundation Library and other NAG Libraries
4.1. NAG Fortran Library
4.2. NAG Workstation Library
4.3. NAG C Library
5. Contact between Users and NAG
6. General Information about NAG
7. References
1. The Library and its Documentation
1.1. Structure of the Library
The NAG Foundation Library is a comprehensive collection of
Fortran 77 routines for the solution of numerical and statistical
problems. The word 'routine' is used to denote 'subroutine' or '
function'.
The Library is divided into chapters, each devoted to a branch of
numerical analysis or statistics. Each chapter has a three-
character name and a title, e.g.
D01 -- Quadrature
Exceptionally one chapter (S) has a one-character name. (The
chapters and their names are based on the ACM modified SHARE
classification index [1].)
All documented routines in the Library have six-character names,
beginning with the characters of the chapter name, e.g.
D01AJF
Note that the second and third characters are digits, not
letters; e.g. 0 is the digit zero, not the letter O. The last
letter of each routine name is always 'F'.
1.2. Structure of the Documentation
There are two types of manual for the NAG Foundation Library: a
Handbook and a Reference Manual.
The Handbook has the same chapter structure as the Library: each
chapter of routines in the Library has a corresponding chapter
(of the same name) in the Handbook. The chapters occur in
alphanumeric order. General introductory documents and indexes
are placed at the beginning of the Handbook.
Each chapter in the Handbook contains a Chapter Introduction,
followed by concise summaries of the functionality and parameter
specifications of each routine in the chapter. Exceptionally, in
some chapters (F06, X01, X02) which contain simple support
routines, there are no concise summaries: all the routines are
described together in the Chapter Introduction.
The Reference Manual provides complete reference documentation
for the NAG Foundation Library. In the Reference Manual, each
chapter consists of the following documents:
Chapter Introduction, e.g. Introduction -- D01;
Chapter Contents, e.g. Contents -- D01;
routine documents, one for each documented routine in the
chapter.
A routine document has the same name as the routine which it
describes. Within each chapter, routine documents occur in
alphanumeric order. As in the Handbook, chapters F06, X01 and X02
do not contain separate documentation for individual routines.
The general introductory documents, indexes and chapter
introductions are the same in the Reference Manual as in the
Handbook. The only exception is that the Essential Introduction
contains a different Section 3 in the two publications, to
describe the different forms of routine documentation.
1.3. On-line Documentation
Extensive on-line documentation is included as an integral part
of the Foundation Library product. This consists of a number of
components:
-- general introductory material, including the Essential
Introduction
-- a summary list of all documented routines
-- a KWIC Index
-- Chapter Introductions
-- routine documents
-- example programs, data and results.
The material has been derived in a number of forms to cater for
different user requirements, e.g. UNIX man pages, plain text,
RICH TEXT format etc, and the appropriate version is included on
the distribution media. For each implementation of the Foundation
Library the specific documentation (Installers' Note, Users' Note
etc) gives details of what is provided.
1.4. Implementations of the Library
The NAG Foundation Library is available on many different
computer systems. For each distinct system, an implementation of
the Library is prepared by NAG, e.g. the IBM RISC System/6000
implementation. The implementation is distributed as a tested
compiled library.
An implementation is usually specific to a range of machines; it
may also be specific to a particular operating system or
compilation system.
Essentially the same facilities are provided in all
implementations of the Library, but, because of differences in
arithmetic behaviour and in the compilation system, routines
cannot be expected to give identical results on different
systems, especially for sensitive numerical problems.
The documentation supports all implementations of the Library,
with the help of a few simple conventions, and a small amount of
implementation-dependent information, which is published in a
separate Users' Note for each implementation (see Section 3.4).
1.5. Library Identification
You must know which implementation of the Library you are using
or intend to use. To find out which implementation of the Library
is available on your machine, you can run a program which calls
the NAG Foundation Library routine A00AAF. This routine has no
parameters; it simply outputs text to the advisory message unit
(see Section 2.4). An example of the output is:
*** Start of NAG Foundation Library implementation details ***
Implementation title: IBM RISC System/6000
Precision: FORTRAN double precision
Product Code: FFIB601D
Release: 1
*** End of NAG Foundation Library implementation details ***
(The product code can be ignored, except possibly when
communicating with NAG; see Section 4.)
1.6. Fortran Language Standards
All routines in the Library conform to ANSI Standard Fortran 90
[8].
Most of the routines in the Library were originally written to
conform to the earlier Fortran 66 [6] and Fortran 77 [7]
standards, and their calling sequences contain some parameters
which are not strictly necessary in Fortran 90.
2. Using the Library
2.1. General Advice
A NAG Foundation Library routine cannot be guaranteed to return
meaningful results, irrespective of the data supplied to it. Care
and thought must be exercised in:
(a) formulating the problem;
(b) programming the use of library routines;
(c) assessing the significance of the results.
2.2. Programming Advice
The NAG Foundation Library and its documentation are designed on
the assumption that users know how to write a calling program in
Fortran.
When programming a call to a routine, read the routine document
carefully, especially the description of the Parameters. This
states clearly which parameters must have values assigned to them
on entry to the routine, and which return useful values on exit.
See Section 3.3 for further guidance.
If a call to a Library routine results in an unexpected error
message from the system (or possibly from within the Library),
check the following:
Has the NAG routine been called with the correct number of
parameters?
Do the parameters all have the correct type?
Have all array parameters been dimensioned correctly?
Remember that all floating-point parameters must be declared to
be double precision, either with an explicit DOUBLE PRECISION
declaration (or COMPLEX(KIND(1.0D0)) if they are complex), or by
using a suitable IMPLICIT statement.
Avoid the use of NAG-type names for your own program units or
COMMON blocks: in general, do not use names which contain a
three-character NAG chapter name embedded in them; they may clash
with the names of an auxiliary routine or COMMON block used by
the NAG Library.
2.3. Error handling and the Parameter IFAIL
NAG Foundation Library routines may detect various kinds of
error, failure or warning conditions. Such conditions are handled
in a systematic way by the Library. They fall roughly into three
classes:
(i) an invalid value of a parameter on entry to a routine;
(ii) a numerical failure during computation (e.g. approximate
singularity of a matrix, failure of an iteration to
converge);
(iii) a warning that although the computation has been completed,
the results cannot be guaranteed to be completely reliable.
All three classes are handled in the same way by the Library, and
are all referred to here simply as 'errors'.
The error-handling mechanism uses the parameter IFAIL, which is
the last parameter in the calling sequence of most NAG Foundation
Library routines. IFAIL serves two purposes:
(i) it allows users to specify what action a Library routine
should take if it detects an error;
(ii) it reports the outcome of a call to a Library routine,
either success (IFAIL = 0) or failure (IFAIL /= 0, with
different values indicating different reasons for the
failure, as explained in Section 6 of the routine document)
.
For the first purpose IFAIL must be assigned a value before
calling the routine; since IFAIL is reset by the routine, it must
be passed as a variable, not as an integer constant. Allowed
values on entry are:
IFAIL=0: an error message is output, and execution is
terminated ('hard failure');
IFAIL=+1: execution continues without any error message;
IFAIL=-1: an error message is output, and execution
continues.
The settings IFAIL =+-1 are referred to as 'soft failure'.
The safest choice is to set IFAIL to 0, but this is not always
convenient: some routines return useful results even though a
failure (in some cases merely a warning) is indicated. However,
if IFAIL is set to +- 1 on entry, it is essential for the program
to test its value on exit from the routine, and to take
appropriate action.
The specification of IFAIL in Section 5 of a routine document
suggests a suitable setting of IFAIL for that routine.
2.4. Input/output in the Library
Most NAG Foundation Library routines perform no output to an
external file, except possibly to output an error message. All
error messages are written to a logical error message unit. This
unit number (which is set by default to 6 in most
implementations) can be changed by calling the Library routine
X04AAF.
Some NAG Foundation Library routines may optionally output their
final results, or intermediate results to monitor the course of
computation. All output other than error messages is written to a
logical advisory message unit. This unit number (which is also
set by default to 6 in most implementations) can be changed by
calling the Library routine X04ABF. Although it is logically
distinct from the error message unit, in practice the two unit
numbers may be the same.
All output from the Library is formatted.
The only Library routines which perform input from an external
file are a few 'option-setting' routines in Chapter E04: the unit
number is a parameter to the routine, and all input is formatted.
You must ensure that the relevant Fortran unit numbers are
associated with the desired external files, either by an OPEN
statement in your calling program, or by operating system
commands.
2.5. Auxiliary Routines
In addition to those Library routines which are documented and
are intended to be called by users, the Library also contains
many auxiliary routines.
In general, you need not be concerned with them at all, although
you may be made aware of their existence if, for example, you
examine a memory map of an executable program which calls NAG
routines. The only exception is that when calling some NAG
Foundation Library routines, you may be required or allowed to
supply the name of an auxiliary routine from the Library as an
external procedure parameter. The routine documents give the
necessary details. In such cases, you only need to supply the
name of the routine; you never need to know details of its
parameter-list.
NAG auxiliary routines have names which are similar to the name
of the documented routine(s) to which they are related, but with
last letter 'Z', 'Y', and so on, e.g. D01AJZ is an auxiliary
routine called by D01AJF.
3. Using the Reference Manual
3.1. General Guidance
The Reference Manual is designed to serve the following
functions:
-- to give background information about different areas of
numerical and statistical computation;
-- to advise on the choice of the most suitable NAG
Foundation Library routine or routines to solve a particular
problem;
-- to give all the information needed to call a NAG
Foundation Library routine correctly from a Fortran program,
and to assess the results.
At the beginning of the Manual are some general introductory
documents. The following may help you to find the chapter, and
possibly the routine, which you need to solve your problem:
Contents -- a list of routines in the Library, by
Summary chapter;
KWIC Index -- a keyword index to chapters and routines.
Having found a likely chapter or routine, you should read the
corresponding Chapter Introduction, which gives background
information about that area of numerical computation, and
recommendations on the choice of a routine, including indexes,
tables or decision trees.
When you have chosen a routine, you must consult the routine
document. Each routine document is essentially self-contained (it
may contain references to related documents). It includes a
description of the method, detailed specifications of each
parameter, explanations of each error exit, and remarks on
accuracy.
Example programs which illustrate the use of each routine are
distributed with the Library in machine-readable form.
3.2. Structure of Routine Documents
All routine documents have the same structure, consisting of nine
numbered sections:
1. Purpose
2. Specification
3. Description
4. References
5. Parameters (see Section 3.3 below)
6. Error Indicators
7. Accuracy
8. Further Comments
9. Example (see Section 3.5 below)
In a few documents, Section 5 also includes a description of
printed output which may optionally be produced by the routine.
3.3. Specifications of Parameters
Section 5 of each routine document contains the specification of
the parameters, in the order of their appearance in the parameter
list.
3.3.1. Classification of Parameters
Parameters are classified as follows:
Input : you must assign values to these parameters on or before
entry to the routine, and these values are unchanged on exit from
the routine.
Output : you need not assign values to these parameters on or
before entry to the routine; the routine may assign values to
them.
Input/Output : you must assign values to these parameters on or
before entry to the routine, and the routine may then change
these values.
Workspace: array parameters which are used as workspace by the
routine. You must supply arrays of the correct type and
dimension, but you need not be concerned with their contents.
External Procedure: a subroutine or function which must be
supplied (e.g. to evaluate an integrand or to print intermediate
output). Usually it must be supplied as part of your calling
program, in which case its specification includes full details of
its parameter-list and specifications of its parameters (all
enclosed in a box). Its parameters are classified in the same way
as those of the Library routine, but because you must write the
procedure rather than call it, the significance of the
classification is different:
Input : values may be supplied on entry, which your procedure
must not change.
Output : you may or must assign values to these parameters
before exit from your procedure.
Input/Output : values may be supplied on entry, and you may
or must assign values to them before exit from your
procedure.
Occasionally, as mentioned in Section 2.5, the procedure can be
supplied from the NAG Library, and then you only need to know its
name.
User Workspace: array parameters which are passed by the Library
routine to an external procedure parameter. They are not used by
the routine, but you may use them to pass information between
your calling program and the external procedure.
3.3.2. Constraints and Suggested Values
The word 'Constraint:' or 'Constraints:' in the specification of
an Input parameter introduces a statement of the range of valid
values for that parameter, e.g.
Constraint: N > 0.
If the routine is called with an invalid value for the parameter
(e.g. N = 0), the routine will usually take an error exit,
returning a non-zero value of IFAIL (see Section 2.3).
In newer documents constraints on parameters of type CHARACTER
only list uppercase alphabetic characters, e.g.
Constraint: STRING = 'A' or 'B'.
In practice all routines with CHARACTER parameters will permit
the use of lower case characters.
The phrase 'Suggested Value:' introduces a suggestion for a
reasonable initial setting for an Input parameter (e.g. accuracy
or maximum number of iterations) in case you are unsure what
value to use; you should be prepared to use a different setting
if the suggested value turns out to be unsuitable for your
problem.
3.3.3. Array Parameters
Most array parameters have dimensions which depend on the size of
the problem. In Fortran terminology they have 'adjustable
dimensions': the dimensions occurring in their declarations are
integer variables which are also parameters of the Library
routine.
For example, a Library routine might have the specification:
SUBROUTINE <name> (M, N, A, B, LDB)
INTEGER M, N, A(N), B(LDB,N), LDB
For a one-dimensional array parameter, such as A in this example,
the specification would begin:
3: A(N) -- DOUBLE PRECISION array Input
You must ensure that the dimension of the array, as declared in
your calling (sub)program, is at least as large as the value you
supply for N. It may be larger; but the routine uses only the
first N elements.
For a two-dimensional array parameter, such as B in the example,
the specification might be:
4: B(LDB,N) -- DOUBLE PRECISION array Input/Output
On entry: the m by n matrix B.
and the parameter LDB might be described as follows:
5: LDB -- INTEGER Input
On entry: the first dimension of the array B as declared in
the (sub)program from which <name> is called. Constraint:
LDB >= M.
You must supply the first dimension of the array B, as declared
in your calling (sub)program, through the parameter LDB, even
though the number of rows actually used by the routine is
determined by the parameter M. You must ensure that the first
dimension of the array is at least as large as the value you
supply for M. The extra parameter LDB is needed because Fortran
does not allow information about the dimensions of array
parameters to be passed automatically to a routine.
You must also ensure that the second dimension of the array, as
declared in your calling (sub)program, is at least as large as
the value you supply for N. It may be larger, but the routine
only uses the first N columns.
A program to call the hypothetical routine used as an example in
this section might include the statements:
INTEGER AA(100), BB(100,50)
LDB = 100
.
.
.
M = 80
N = 20
CALL <name>(M,N,AA,BB,LDB)
Fortran requires that the dimensions which occur in array
declarations, must be greater than zero. Many NAG routines are
designed so that they can be called with a parameter like N in
the above example set to 0 (in which case they would usually exit
immediately without doing anything). If so, the declarations in
the Library routine would use the 'assumed size' array dimension,
and would be given as:
INTEGER M, N, A(*), B(LDB,*), LDB
However, the original declaration of an array in your calling
program must always have constant dimensions, greater than or
equal to 1.
Consult an expert or a textbook on Fortran, if you have
difficulty in calling NAG routines with array parameters.
3.4. Implementation-dependent Information
In order to support all implementations of the Foundation
Library, the Manual has adopted a convention of using bold
italics to distinguish terms which have different interpretations
in different implementations.
For example, machine precision denotes the relative precision to
which double precision floating-point numbers are stored in the
computer, e.g. in an implementation with approximately 16 decimal
digits of precision, machine precision has a value of
- 16
approximately 10 .
The precise value of machine precision is given by the function
X02AJF. Other functions in Chapter X02 return the values of other
implementation-dependent constants, such as the overflow
threshold, or the largest representable integer. Refer to the X02
Chapter Introduction for more details.
For each implementation of the Library, a separate Users' Note is
provided. This is a short document, revised at each Mark. At most
installations it is available in machine-readable form. It gives
any necessary additional information which applies specifically
to that implementation, in particular:
-- the interpretation of bold italicised terms;
-- the values returned by X02 routines;
-- the default unit numbers for output (see Section 2.4).
3.5. Example Programs and Results
The last section of each routine document describes an example
problem which can be solved by simple use of the routine. The
example programs themselves, together with data and results, are
not printed in the routine document, but are distributed in
machine-readable form with the Library. The programs are designed
so that they can fairly easily be modified, and so serve as the
basis for a simple program to solve a user's own problem.
The results distributed with each implementation were obtained
using that implementation of the Library; they may not be
identical to the results obtained with other implementations.
3.6. Summary for New Users
If you are unfamiliar with the NAG Foundation Library and are
thinking of using a routine from it, please follow these
instructions:
(a) read the whole of the Essential Introduction;
(b) consult the Contents Summary or KWIC Index to choose an
appropriate chapter or routine;
(c) read the relevant Chapter Introduction;
(d) choose a routine, and read the routine document. If the
routine does not after all meet your needs, return to steps
(b) or (c);
(e) read the Users' Note for your implementation;
(f) consult local documentation, which should be provided by your
local support staff, about access to the NAG Library on your
computing system.
You should now be in a position to include a call to the routine
in a program, and to attempt to run it. You may of course need to
refer back to the relevant documentation in the case of
difficulties, for advice on assessment of results, and so on.
As you become familiar with the Library, some of steps (a) to (f)
can be omitted, but it is always essential to:
-- be familiar with the Chapter Introduction;
-- read the routine document;
-- be aware of the Users' Note for your implementation.
4. Relationship between the Foundation Library and other NAG Libraries
4.1. NAG Fortran Library
The Foundation Library is a strict subset of the full NAG Fortran
Library (Mark 15 or later). Routines in both libraries have
identical source code (apart from any modifications necessary for
implementation on a specific system) and hence can be called in
exactly the same way, though you should consult the relevant
implementation-specific documentation for details such as values
of machine constants.
By its very nature, the Foundation Library cannot contain the
same extensive range of routines as the full Fortran Library. If
your application requires a routine which is not in the
Foundation Library, then please consult NAG for information on
relevant material available in the Fortran Library.
Some routines which occur as user-callable routines in the full
Fortran Library are included as auxiliary routines in the
Foundation Library but they are not documented in this
publication and direct calls to them should only be made if you
are already familiar with their use in the Fortran Library. A
list of all such auxiliary routines is given at the end of the
Foundation Library Contents Summary.
Whereas the full Fortran Library may be provided in either a
single precision or a double precision version, the Foundation
Library is always provided in double precision.
4.2. NAG Workstation Library
The Foundation Library is a successor product to an earlier,
smaller subset of the full NAG Fortran Library which was called
the NAG Workstation Library. The Foundation Library has greater
functionality than the Workstation Library but is not strictly
upwards compatible, i.e., a number of routines in the earlier
product have been replaced by new material to reflect recent
algorithmic developments.
If you have used the Workstation Library and wish to convert your
programs to call routines from the Foundation Library, please
consult the document 'Converting from the Workstation Library' in
this Manual.
4.3. NAG C Library
NAG has also developed a library of numerical and statistical
software for use by C programmers. This now contains over 200
user-callable functions and provides similar (but not identical)
coverage to that of the Foundation Library. Please contact NAG
for further details if you have a requirement for similar quality
library code in C.
5. Contact between Users and NAG
If you are using the NAG Foundation Library in a multi-user
environment and require further advice please consult your local
support staff who will be receiving regular information from NAG.
This covers such matters as:
-- obtaining a copy of the Users' Note for your
implementation;
-- obtaining information about local access to the Library;
-- seeking advice about using the Library;
-- reporting suspected errors in routines or documents;
-- making suggestions for new routines or features;
-- purchasing NAG documentation.
If you are unable to make contact with a local source of support
or are in a single-user environment then please contact NAG
directly at any one of the addresses given at the beginning of
this publication.
6. General Information about NAG
NAG produces and distributes numerical, symbolic, statistical and
graphical software for the solution of problems in a wide range
of applications in such areas as science, engineering, financial
analysis and research.
For users who write programs and build packages NAG produces sub-
program libraries in a range of computer languages (Ada, C,
Fortran, Pascal, Turbo Pascal). NAG also provides a number of
Fortran programming support products in the NAGWare range --
Fortran 77 programming tools, Fortran 90 compilers for a number
of machine platforms (including PC-DOS) and VecPar 77 for
restructuring and tuning programs for execution on vector or
parallel computers.
For users who do not wish to program in the traditional sense but
want the same reliability and qualities offered by our libraries,
NAG provides several powerful mathematical and statistical
packages for interactive use. A major addition to this range of
packages is AXIOM -- the powerful symbolic solver which includes
a Hypertext system and graphical capabilities.
For further details of any of these products, please contact NAG
at one of the addresses given at the beginning of this
publication.
References [2], [3], [4], and [5] discuss various aspects of the
design and development of the NAG Library, and NAG's technical
policies and organisation.
7. References
[1] (1960--1976) Collected Algorithms from ACM Index by subject
to algorithms.
[2] Ford B (1982) Transportable Numerical Software. Lecture
Notes in Computer Science. 142 128--140.
[3] Ford B, Bentley J, Du Croz J J and Hague S J (1979) The NAG
Library 'machine'. Software Practice and Experience. 9(1)
65--72.
[4] Ford B and Pool J C T (1984) The Evolving NAG Library
Service. Sources and Development of Mathematical Software.
(ed W Cowell) Prentice-Hall. 375--397.
[5] Hague S J, Nugent S M and Ford B (1982) Computer-based
Documentation for the NAG Library. Lecture Notes in Computer
Science. 142 91--127.
[6] (1966) USA Standard Fortran. Publication X3.9. American
National Standards Institute.
[7] (1978) American National Standard Fortran. Publication X3.9.
American National Standards Institute.
[8] (1991) American National Standard Programming Language
Fortran 90. Publication X3.198.
American National Standards Institute.
\end{verbatim}
\endscroll
\end{page}
\begin{page}{manpageXXkwic}{NAG On-line Documentation: kwic}
\beginscroll
\begin{verbatim}
KWIC(3NAG) Foundation Library (12/10/92) KWIC(3NAG)
Introduction Keywords in Context
Keywords in Context
Pre-computed weights and D01BBF
abscissae
for Gaussian quadrature rules, restricted choice of ...
Sum the F06EKF
absolute
values of real vector elements (DASUM)
Sum the F06JKF
absolute
values of complex vector elements (DZASUM)
Index, real vector element with largest F06JLF
absolute
value (IDAMAX)
Index, complex vector element with largest F06JMF
absolute
value (IZAMAX)
ODEs, IVP, D02CJF
Adams
method, until function of solution is zero, ...
1-D quadrature, D01AJF
adaptive
, finite interval, strategy due to Piessens and de ...
1-D quadrature, D01AKF
adaptive
, finite interval, method suitable for oscillating ...
1-D quadrature, D01ALF
adaptive
, finite interval, allowing for singularities at ...
1-D quadrature, D01AMF
adaptive
, infinite or semi-infinite interval
1-D quadrature, D01ANF
adaptive
, finite interval, weight function cos((omega)x) ...
1-D quadrature, D01APF
adaptive
, finite interval, weight function with end-point ...
1-D quadrature, D01AQF
adaptive
, finite interval, weight function 1/(x-c), ...
1-D quadrature, D01ASF
adaptive
, semi-infinite interval, weight function cos((omega)x)
Multi-dimensional D01FCF
adaptive
quadrature over hyper-rectangle
Add F06ECF
scalar times real vector to real vector (DAXPY)
Add F06GCF
scalar times complex vector to complex vector (ZAXPY)
Return or set unit number for X04ABF
advisory
messages
Airy S17AGF
function Ai(x)
Airy S17AHF
function Bi(x)
Airy S17AJF
function Ai'(x)
Airy S17AKF
function Bi'(x)
Airy S17DGF
functions Ai(z) and Ai('z), complex z
Airy S17DHF
functions Bi(z) and Bi'(z), complex z
Airy function S17AGF
Ai(x)
Airy function S17AJF
Ai'(x)
Airy functions S17DGF
Ai(z)
and Ai'(z), complex z
Airy functions Ai(z) and S17DGF
Ai'(z)
, complex z
algebraico-logarithmic
type
Two-way contingency table G01AFF
analysis
2
, with (chi) /Fisher's exact test
Performs principal component G03AAF
analysis
Performs canonical correlation G03ADF
analysis
Friedman two-way G08AEF
analysis
of variance on k matched samples
Kruskal-Wallis one-way G08AFF
analysis
of variance on k samples of unequal size
L - E02GAF
1
approximation
by general linear function
Approximation E02
Approximation S
of special functions
ARIMA
model
Univariate time series, estimation, seasonal G13AFF
ARIMA
model
ARIMA
model
ARIMA
model
Safe range of floating-point X02AMF
arithmetic
Safe range of complex floating-point X02ANF
arithmetic
Parameter of floating-point X02BHF
arithmetic
model, b
Parameter of floating-point X02BJF
arithmetic
model, p
Parameter of floating-point X02BKF
arithmetic
model, e
min
Parameter of floating-point X02BLF
arithmetic
model, e
max
Parameter of floating-point X02DJF
arithmetic
model, ROUNDS
Univariate time series, sample G13ABF
autocorrelation
function
Univariate time series, partial G13ACF
autocorrelations
from autocorrelations
Univariate time series, partial autocorrelations from G13ACF
autocorrelations
Least-squares cubic spline curve fit, E02BEF
automatic
knot placement
Least-squares surface fit by bicubic splines with E02DCF
automatic
knot placement, data on rectangular grid
Least-squares surface fit by bicubic splines with E02DDF
automatic
knot placement, scattered data
B-splines E02
Matrix-vector product, real rectangular F06PBF
band
matrix (DGBMV)
Matrix-vector product, real symmetric F06PDF
band
matrix (DSBMV)
Matrix-vector product, real triangular F06PGF
band
matrix (DTBMV)
System of equations, real triangular F06PKF
band
matrix (DTBSV)
Matrix-vector product, complex rectangular F06SBF
band
matrix (ZGBMV)
Matrix-vector product, complex Hermitian F06SDF
band
matrix (ZHBMV)
Matrix-vector product, complex triangular F06SGF
band
matrix (ZTBMV)
System of equations, complex triangular F06SKF
band
matrix (ZTBSV)
bandwidth
matrix
Solution of real symmetric positive-definite variable- F04MCF
bandwidth
simultaneous linear equations (coefficient matrix ...
Basic F06
Linear Algebra Subprograms
ODEs, stiff IVP, D02EJF
BDF
method, until function of solution is zero,
intermediate ...
Kelvin function S19ABF
bei
x
Kelvin function S19AAF
ber
x
Bessel S17ACF
function Y (x)
0
Bessel S17ADF
function Y (x)
1
Bessel S17AEF
function J (x)
0
Bessel S17AFF
function J (x)
1
Bessel S17DCF
functions Y (z), complex z, real (nu)>=0, ...
(nu)+n
Bessel S17DEF
functions J (z), complex z, real (nu)>=0, ...
(nu)+n
Modified S18ACF
Bessel
function K (x)
0
Modified S18ADF
Bessel
function K (x)
1
Modified S18AEF
Bessel
function I (x)
0
Modified S18AFF
Bessel
function I (x)
1
Modified S18DCF
Bessel
functions K (z), complex z, real (nu)>=0, ...
(nu)+n
Modified S18DEF
Bessel
functions I (z), complex z, real (nu)>=0, ...
(nu)+n
beta
distribution
Computes deviates for the G01FEF
beta
distribution
Generates a vector of pseudo-random numbers from a G05FEF
beta
distribution
Interpolating functions, fitting E01DAF
bicubic
spline, data on rectangular grid
Least-squares surface fit, E02DAF
bicubic
splines
Least-squares surface fit by E02DCF
bicubic
splines with automatic knot placement, data on ...
Least-squares surface fit by E02DDF
bicubic
splines with automatic knot placement, scattered data
Evaluation of a fitted E02DEF
bicubic
spline at a vector of points
Evaluation of a fitted E02DFF
bicubic
spline at a mesh of points
Sort 2-D data into panels for fitting E02ZAF
bicubic
splines
Fits a generalized linear model with G02GBF
binomial
errors
binomial
distribution
Computes probability for the G01HAF
bivariate
Normal distribution
Airy function S17AHF
Bi(x)
Airy function S17AKF
Bi'(x)
Airy functions S17DHF
Bi(z)
and Bi'(z), complex z
Airy functions Bi(z) and S17DHF
Bi'(z)
, complex z
BLAS F06
Pseudo-random logical G05DZF
(boolean)
value
ODEs, D02GAF
boundary
value problem, finite difference technique with ...
ODEs, D02GBF
boundary
value problem, finite difference technique with ...
ODEs, general nonlinear D02RAF
boundary
value problem, finite difference technique with ...
bounds
, using function values only
break-points
break-points
Zero of continuous function in given interval, C05ADF
Bus
and Dekker algorithm
Performs G03ADF
canonical
correlation analysis
Carlo
method
Elliptic PDE, Helmholtz equation, 3-D D03FAF
Cartesian
co-ordinates
Cauchy
principal value (Hilbert transform)
Pseudo-random real numbers, G05DFF
Cauchy
distribution
character
string
Compare two X05ACF
character
strings representing date and time
Evaluation of fitted polynomial in one variable from E02AEF
Chebyshev
series form (simplified parameter list)
Derivative of fitted polynomial in E02AHF
Chebyshev
series form
Integral of fitted polynomial in E02AJF
Chebyshev
series form
Evaluation of fitted polynomial in one variable, from E02AKF
Chebyshev
series form
Check C05ZAF
user's routine for calculating 1st derivatives
Univariate time series, diagnostic G13ASF
checking
of residuals, following G13AFF
Cholesky F07FDF
factorization of real symmetric positive-definite ...
Circular C06EKF
convolution or correlation of two real vectors, no ...
Cosine integral S13ACF
Ci(x)
Interpolating functions, method of Renka and E01SAF
Cline
, two variables
Elliptic PDE, Helmholtz equation, 3-D Cartesian D03FAF
co-ordinates
coefficient
matrix already factorized by F01MCF)
coefficient
matrix (DTRSM)
coefficient
matrix (ZTRSM)
Kendall/Spearman non-parametric rank correlation G02BNF
coefficients
, no missing values, overwriting input data
Kendall/Spearman non-parametric rank correlation G02BQF
coefficients
, no missing values, preserving input data
Operations with orthogonal matrices, form F01QEF
columns
of Q after factorization by F01QCF
Operations with unitary matrices, form F01REF
columns
of Q after factorization by F01RCF
Rank M01DJF
columns
of a matrix, real numbers
Compare X05ACF
two character strings representing date and time
Complement S15ADF
of error function erfcx
Unconstrained minimum, pre- E04DGF
conditioned
conjugate gradient algorithm, function of several ...
Complex C06GBF
conjugate
of Hermitian sequence
Complex C06GCF
conjugate
of complex sequence
Complex C06GQF
conjugate
of multiple Hermitian sequences
Unconstrained minimum, pre-conditioned E04DGF
conjugate
gradient algorithm, function of several variables ...
Dot product of two complex vectors, F06GBF
conjugated
(ZDOTC)
Rank-1 update, complex rectangular matrix, F06SNF
conjugated
vector (ZGERC)
Mathematical X01
Constants
Machine X02
Constants
constrained
, arbitrary data points
constraints
, using function values and optionally 1st ...
Two-way G01AFF
contingency
2
table analysis, with (chi) /Fisher's ...
continuation
facility
Zero of C05ADF
continuous
function in given interval, Bus and Dekker algorithm
2
continuous
distributions
Convert C06GSF
Hermitian sequences to general complex sequences
Convert X05ABF
array of integers representing date and time to ...
Circular C06EKF
convolution
or correlation of two real vectors, no extra ...
Copy F06EFF
real vector (DCOPY)
Copy F06GFF
complex vector (ZCOPY)
correction
, simple nonlinear problem
correction
, general linear problem
correction
, continuation facility
Circular convolution or C06EKF
correlation
of two real vectors, no extra workspace
Kendall/Spearman non-parametric rank G02BNF
correlation
coefficients, no missing values, overwriting ...
Kendall/Spearman non-parametric rank G02BQF
correlation
coefficients, no missing values, preserving input ...
Computes (optionally weighted) G02BXF
correlation
and covariance matrices
Performs canonical G03ADF
correlation
analysis
Multivariate time series, cross- G13BCF
correlations
cos
((omega)x) or sin((omega)x)
cos
((omega)x) or sin((omega)x)
Cosine S13ACF
integral Ci(x)
Covariance E04YCF
matrix for nonlinear least-squares problem
Computes (optionally weighted) correlation and G02BXF
covariance
matrices
Return the X05BAF
CPU
time
Multivariate time series, G13BCF
cross-correlations
Multivariate time series, smoothed sample G13CDF
cross
spectrum using spectral smoothing by the trapezium ...
Interpolating functions, E01BAF
cubic
spline interpolant, one variable
cubic
Hermite, one variable
Least-squares curve E02BAF
cubic
spline fit (including interpolation)
Evaluation of fitted E02BBF
cubic
spline, function only
Evaluation of fitted E02BCF
cubic
spline, function and derivatives
Evaluation of fitted E02BDF
cubic
spline, definite integral
Least-squares E02BEF
cubic
spline curve fit, automatic knot placement
Set up reference vector from supplied G05EXF
cumulative
distribution function or probability distribution ...
Least-squares E02ADF
curve
fit, by polynomials, arbitrary data points
Least-squares E02BAF
curve
cubic spline fit (including interpolation)
Least-squares cubic spline E02BEF
curve
fit, automatic knot placement
Fresnel integral S20ADF
C(x)
Daniell)
window
Daniell)
window
Return X05AAF
date
and time as an array of integers
Convert array of integers representing X05ABF
date
and time to character string
Compare two character strings representing X05ACF
date
and time
deferred
correction, simple nonlinear problem
deferred
correction, general linear problem
deferred
correction, continuation facility
Interpolated values, interpolant computed by E01BEF, E01BHF
definite
integral, one variable
Evaluation of fitted cubic spline, E02BDF
definite
integral
definite
matrix
T
LDL factorization of real symmetric positive- F01MCF
definite
variable-bandwidth matrix
definite
definite
Solution of real symmetric positive- F04ASF
definite
simultaneous linear equations, one right-hand side ...
Solution of real symmetric positive- F04FAF
definite
tridiagonal simultaneous linear equations, one ...
Real sparse symmetric positive- F04MAF
definite
simultaneous linear equations (coefficient matrix ...
Solution of real symmetric positive- F04MCF
definite
variable-bandwidth simultaneous linear equations ...
Cholesky factorization of real symmetric positive- F07FDF
definite
matrix (DPOTRF)
Solution of real symmetric positive- F07FEF
definite
system of linear equations, multiple right-hand ...
Degenerate S21BAF
symmetrised elliptic integral of 1st kind R ...
C
Dekker
algorithm
Computes upper and lower tail and probability G01EEF
density
function probabilities for the beta distribution
Solution of system of nonlinear equations using 1st C05PBF
derivatives
Check user's routine for calculating 1st C05ZAF
derivatives
derivative
, one variable
Least-squares polynomial fit, values and E02AGF
derivatives
may be constrained, arbitrary data points
Derivative E02AHF
of fitted polynomial in Chebyshev series form
Evaluation of fitted cubic spline, function and E02BCF
derivatives
derivatives
derivatives
derivatives
Computes G01FAF
deviates
for the standard Normal distribution
Computes G01FBF
deviates
for Student's t-distribution
Computes G01FCF
deviates
2
for the (chi) distribution
Computes G01FDF
deviates
for the F-distribution
Computes G01FEF
deviates
for the beta distribution
Computes G01FFF
deviates
for the gamma distribution
Univariate time series, G13ASF
diagnostic
checking of residuals, following G13AFF
ODEs, boundary value problem, finite D02GAF
difference
technique with deferred correction, simple ...
ODEs, boundary value problem, finite D02GBF
difference
technique with deferred correction, general linear ...
difference
technique with deferred correction, continuation ...
Elliptic PDE, solution of finite D03EDF
difference
equations by a multigrid technique
Univariate time series, seasonal and non-seasonal G13AAF
differencing
Single 1-D real C06EAF
discrete
Fourier transform, no extra workspace
Single 1-D Hermitian C06EBF
discrete
Fourier transform, no extra workspace
Single 1-D complex C06ECF
discrete
Fourier transform, no extra workspace
Multiple 1-D real C06FPF
discrete
Fourier transforms
Multiple 1-D Hermitian C06FQF
discrete
Fourier transforms
Multiple 1-D complex C06FRF
discrete
Fourier transforms
2-D complex C06FUF
discrete
Fourier transform
Discretize D03EEF
a 2nd order elliptic PDE on a rectangle
Computes probabilities for the standard Normal G01EAF
distribution
Computes probabilities for Student's t- G01EBF
distribution
2
Computes probabilities for (chi) G01ECF
distribution
Computes probabilities for F- G01EDF
distribution
distribution
Computes probabilities for the gamma G01EFF
distribution
Computes deviates for the standard Normal G01FAF
distribution
Computes deviates for Student's t- G01FBF
distribution
2
Computes deviates for the (chi) G01FCF
distribution
Computes deviates for the F- G01FDF
distribution
Computes deviates for the beta G01FEF
distribution
Computes deviates for the gamma G01FFF
distribution
Computes probability for the bivariate Normal G01HAF
distribution
Pseudo-random real numbers, uniform G05CAF
distribution
over (0,1)
Pseudo-random real numbers, Normal G05DDF
distribution
Pseudo-random real numbers, Cauchy G05DFF
distribution
Pseudo-random real numbers, Weibull G05DPF
distribution
Pseudo-random integer from uniform G05DYF
distribution
Set up reference vector for multivariate Normal G05EAF
distribution
distribution
distribution
Set up reference vector from supplied cumulative G05EXF
distribution
function or probability distribution function
distribution
function
Generates a vector of random numbers from a uniform G05FAF
distribution
distribution
Generates a vector of random numbers from a Normal G05FDF
distribution
distribution
distribution
2
(chi) goodness of fit test, for standard continuous G08CGF
distributions
Inverse G01F
distributions
Doncker
, allowing for badly-behaved integrands
Dot F06EAF
product of two real vectors (DDOT)
Dot F06GAF
product of two complex vectors, unconjugated (ZDOTU)
Dot F06GBF
product of two complex vectors, conjugated (ZDOTC)
eigenfunction
, user-specified break-points
All eigenvalues of generalized real F02ADF
eigenproblem
of the form Ax=(lambda)Bx where A and B are ...
All eigenvalues and eigenvectors of generalized real F02AEF
eigenproblem
of the form Ax=(lambda)Bx where A and B are ...
eigenproblem
by QZ algorithm, real matrices
eigenproblem
eigenvalue
and eigenfunction, user-specified break-points
All F02AAF
eigenvalues
of real symmetric matrix
All F02ABF
eigenvalues
and eigenvectors of real symmetric matrix
All F02ADF
eigenvalues
of generalized real eigenproblem of the form
Ax=(lambda)Bx
All F02AEF
eigenvalues
and eigenvectors of generalized real ...
All F02AFF
eigenvalues
of real matrix
All F02AGF
eigenvalues
and eigenvectors of real matrix
All F02AJF
eigenvalues
of complex matrix
All F02AKF
eigenvalues
and eigenvectors of complex matrix
All F02AWF
eigenvalues
of complex Hermitian matrix
All F02AXF
eigenvalues
and eigenvectors of complex Hermitian matrix
Selected F02BBF
eigenvalues
and eigenvectors of real symmetric matrix
All F02BJF
eigenvalues
and optionally eigenvectors of generalized ...
Selected F02FJF
eigenvalues
and eigenvectors of sparse symmetric eigenproblem
All eigenvalues and F02ABF
eigenvectors
of real symmetric matrix
All eigenvalues and F02AEF
eigenvectors
of generalized real eigenproblem of the form ...
All eigenvalues and F02AGF
eigenvectors
of real matrix
All eigenvalues and F02AKF
eigenvectors
of complex matrix
All eigenvalues and F02AXF
eigenvectors
of complex Hermitian matrix
Selected eigenvalues and F02BBF
eigenvectors
of real symmetric matrix
All eigenvalues and optionally F02BJF
eigenvectors
of generalized eigenproblem by QZ algorithm, ...
Selected eigenvalues and F02FJF
eigenvectors
of sparse symmetric eigenproblem
Elliptic D03EDF
PDE, solution of finite difference equations by a ...
Discretize a 2nd order D03EEF
elliptic
PDE on a rectangle
Elliptic D03FAF
PDE, Helmholtz equation, 3-D Cartesian co-ordinates
Degenerate symmetrised S21BAF
elliptic
integral of 1st kind R (x,y)
C
Symmetrised S21BBF
elliptic
integral of 1st kind R (x,y,z)
F
Symmetrised S21BCF
elliptic
integral of 2nd kind R (x,y,z)
D
Symmetrised S21BDF
elliptic
integral of 3rd kind R (x,y,z,r)
J
end-point
singularities of algebraico-logarithmic type
error
Fits a generalized linear model with binomial G02GBF
errors
Fits a generalized linear model with Poisson G02GCF
errors
Complement of S15ADF
error
function erfc x
Error S15AEF
function erf x
Return or set unit number for X04AAF
error
messages
Computes G02DNF
estimable
function of a general linear regression model and ...
Univariate time series, preliminary G13ADF
estimation
, seasonal ARIMA model
Univariate time series, G13AFF
estimation
, seasonal ARIMA model
Multivariate time series, preliminary G13BDF
estimation
of transfer function model
Multivariate time series, G13BEF
estimation
of multi-input model
Compute F06EJF
Euclidean
norm of real vector (DNRM2)
Compute F06JJF
Euclidean
norm of complex vector (DZNRM2)
Evaluation E02AEF
of fitted polynomial in one variable from ...
Evaluation E02AKF
of fitted polynomial in one variable, from ...
Evaluation E02BBF
of fitted cubic spline, function only
Evaluation E02BCF
of fitted cubic spline, function and derivatives
Evaluation E02BDF
of fitted cubic spline, definite integral
Evaluation E02DEF
of a fitted bicubic spline at a vector of points
Evaluation E02DFF
of a fitted bicubic spline at a mesh of points
2
exact
test
Computes the G08AJF
exact
probabilities for the Mann-Whitney U statistic, no ...
Computes the G08AKF
exact
probabilities for the Mann-Whitney U statistic, ties ..
exponential
distribution
Complex S01EAF
exponential
z
, e
Exponential S13AAF
integral E (x)
1
Computes a five-point summary (median, hinges and G01ALF
extremes)
Computes probabilities for G01EDF
F
-distribution
Computes deviates for the G01FDF
F
-distribution
LU F01BRF
factorization
of real sparse matrix
LU F01BSF
factorization
of real sparse matrix with known sparsity pattern
T
LL F01MAF
factorization
of real sparse symmetric positive-definite matrix
T
LDL F01MCF
factorization
of real symmetric positive-definite ...
QR F01QCF
factorization
of real m by n matrix (m>=n)
T
factorization
by F01QCF
factorization
by F01QCF
QR F01RCF
factorization
of complex m by n matrix (m>=n)
H
factorization
by F01RCF
factorization
by F01RCF
LU F07ADF
factorization
of real m by n matrix (DGETRF)
Cholesky F07FDF
factorization
of real symmetric positive-definite matrix ...
Multivariate time series, G13BAF
filtering
(pre-whitening) by an ARIMA model
1-D quadrature, adaptive, D01AJF
finite
interval, strategy due to Piessens and de Doncker, ...
1-D quadrature, adaptive, D01AKF
finite
interval, method suitable for oscillating functions
1-D quadrature, adaptive, D01ALF
finite
interval, allowing for singularities at user-specified
1-D quadrature, adaptive, D01ANF
finite
interval, weight function cos((omega)x) or sin...
1-D quadrature, adaptive, D01APF
finite
interval, weight function with end-point ...
1-D quadrature, adaptive, D01AQF
finite
interval, weight function 1/(x-c), Cauchy ...
ODEs, boundary value problem, D02GAF
finite
difference technique with deferred correction, simple .
ODEs, boundary value problem, D02GBF
finite
difference technique with deferred correction, general
finite/infinite
range, eigenvalue and eigenfunction, ...
ODEs, general nonlinear boundary value problem, D02RAF
finite
difference technique with deferred correction, ...
Elliptic PDE, solution of D03EDF
finite
difference equations by a multigrid technique
2
Fisher's
exact test
Interpolating functions, E01DAF
fitting
bicubic spline, data on rectangular grid
Least-squares curve E02ADF
fit
, by polynomials, arbitrary data points
Evaluation of E02AEF
fitted
polynomial in one variable from Chebyshev series form .
Least-squares polynomial E02AGF
fit
, values and derivatives may be constrained, arbitrary
Derivative of E02AHF
fitted
polynomial in Chebyshev series form
Integral of E02AJF
fitted
polynomial in Chebyshev series form
Evaluation of E02AKF
fitted
polynomial in one variable, from Chebyshev series form
Least-squares curve cubic spline E02BAF
fit
(including interpolation)
Evaluation of E02BBF
fitted
cubic spline, function only
Evaluation of E02BCF
fitted
cubic spline, function and derivatives
Evaluation of E02BDF
fitted
cubic spline, definite integral
Least-squares cubic spline curve E02BEF
fit
, automatic knot placement
Least-squares surface E02DAF
fit
, bicubic splines
Least-squares surface E02DCF
fit
by bicubic splines with automatic knot placement, data
on ...
Least-squares surface E02DDF
fit
by bicubic splines with automatic knot placement, ...
Evaluation of a E02DEF
fitted
bicubic spline at a vector of points
Evaluation of a E02DFF
fitted
bicubic spline at a mesh of points
Sort 2-D data into panels for E02ZAF
fitting
bicubic splines
Fits G02DAF
a general (multiple) linear regression model
Fits G02DGF
a general linear regression model for new dependent ...
Fits G02GBF
a generalized linear model with binomial errors
Fits G02GCF
a generalized linear model with Poisson errors
2
Performs the (chi) goodness of G08CGF
fit
test, for standard continuous distributions
Goodness of G08
fit
tests
Computes a G01ALF
five-point
summary (median, hinges and extremes)
Safe range of X02AMF
floating-point
arithmetic
Safe range of complex X02ANF
floating-point
arithmetic
Parameter of X02BHF
floating-point
arithmetic model, b
Parameter of X02BJF
floating-point
arithmetic model, p
Parameter of X02BKF
floating-point
arithmetic model, e
min
Parameter of X02BLF
floating-point
arithmetic model, e
max
Parameter of X02DJF
floating-point
arithmetic model, ROUNDS
Univariate time series, update state set for G13AGF
forecasting
Univariate time series, G13AHF
forecasting
from state set
Univariate time series, state set and G13AJF
forecasts
, from fully specified seasonal ARIMA model
Multivariate time series, state set and G13BJF
forecasts
from fully specified multi-input model
Single 1-D real discrete C06EAF
Fourier
transform, no extra workspace
Single 1-D Hermitian discrete C06EBF
Fourier
transform, no extra workspace
Single 1-D complex discrete C06ECF
Fourier
transform, no extra workspace
Multiple 1-D real discrete C06FPF
Fourier
transforms
Multiple 1-D Hermitian discrete C06FQF
Fourier
transforms
Multiple 1-D complex discrete C06FRF
Fourier
transforms
2-D complex discrete C06FUF
Fourier
transform
frequency
table
Frequency G01AEF
table from raw data
frequency
(Daniell) window
frequency
(Daniell) window
Fresnel S20ACF
integral S(x)
Fresnel S20ADF
integral C(x)
Friedman G08AEF
two-way analysis of variance on k matched samples
Computes probabilities for the G01EFF
gamma
distribution
Computes deviates for the G01FFF
gamma
distribution
Generates a vector of pseudo-random numbers from a G05FFF
gamma
distribution
Gamma S14AAF
function
Log S14ABF
Gamma
function
Incomplete S14BAF
gamma
functions P(a,x) and Q(a,x)
Unconstrained minimum of a sum of squares, combined E04FDF
Gauss-Newton
and modified Newton algorithm using function ...
Unconstrained minimum of a sum of squares, combined E04GCF
Gauss-Newton
and quasi-Newton algorithm, using 1st derivatives
Pre-computed weights and abscissae for D01BBF
Gaussian
quadrature rules, restricted choice of rule
All eigenvalues of F02ADF
generalized
real eigenproblem of the form Ax=(lambda)Bx where ...
All eigenvalues and eigenvectors of F02AEF
generalized
real eigenproblem of the form Ax=(lambda)Bx where ...
All eigenvalues and optionally eigenvectors of F02BJF
generalized
eigenproblem by QZ algorithm, real matrices
Fits a G02GBF
generalized
linear model with binomial errors
Fits a G02GCF
generalized
linear model with Poisson errors
Computes orthogonal rotations for loading matrix, G03BAF
generalized
orthomax criterion
Generate F06AAF
real plane rotation (DROTG)
Initialise random number G05CBF
generating
routines to give repeatable sequence
Initialise random number G05CCF
generating
routines to give non-repeatable sequence
Save state of random number G05CFF
generating
routines
Restore state of random number G05CGF
generating
routines
Set up reference vector for G05ECF
generating
pseudo-random integers, Poisson distribution
Set up reference vector for G05EDF
generating
pseudo-random integers, binomial distribution
Generates G05FAF
a vector of random numbers from a uniform ...
Generates G05FBF
a vector of random numbers from an (negative) ...
Generates G05FDF
a vector of random numbers from a Normal distribution
Generates G05FEF
a vector of pseudo-random numbers from a beta ...
Generates G05FFF
a vector of pseudo-random numbers from a gamma ...
Generates G05HDF
a realisation of a multivariate time series from a ...
Gill-Miller
method
2
Performs the (chi) G08CGF
goodness
of fit test, for standard continuous distributions
Goodness G08
of fit tests
Unconstrained minimum, pre-conditioned conjugate E04DGF
gradient
algorithm, function of several variables using 1st ...
Hankel S17DLF
(j)
functions H (z), j=1,2, ...
(nu)+n
Elliptic PDE, D03FAF
Helmholtz
equation, 3-D Cartesian co-ordinates
Hermite
, one variable
Single 1-D C06EBF
Hermitian
discrete Fourier transform, no extra workspace
Multiple 1-D C06FQF
Hermitian
discrete Fourier transforms
Complex conjugate of C06GBF
Hermitian
sequence
Complex conjugate of multiple C06GQF
Hermitian
sequences
Convert C06GSF
Hermitian
sequences to general complex sequences
All eigenvalues of complex F02AWF
Hermitian
matrix
All eigenvalues and eigenvectors of complex F02AXF
Hermitian
matrix
Matrix-vector product, complex F06SCF
Hermitian
matrix (ZHEMV)
Matrix-vector product, complex F06SDF
Hermitian
band matrix (ZHBMV)
Matrix-vector product, complex F06SEF
Hermitian
packed matrix (ZHPMV)
Rank-1 update, complex F06SPF
Hermitian
matrix (ZHER)
Rank-1 update, complex F06SQF
Hermitian
packed matrix (ZHPR)
Rank-2 update, complex F06SRF
Hermitian
matrix (ZHER2)
Rank-2 update, complex F06SSF
Hermitian
packed matrix (ZHPR2)
Matrix-matrix product, one complex F06ZCF
Hermitian
matrix, one complex rectangular matrix (ZHEMM)
Rank-k update of a complex F06ZPF
Hermitian
matrix (ZHERK)
Rank-2k update of a complex F06ZRF
Hermitian
matrix (ZHER2K)
Hilbert
transform)
Computes a five-point summary (median, G01ALF
hinges
and extremes)
Multi-dimensional adaptive quadrature over D01FCF
hyper-rectangle
Multi-dimensional quadrature over D01GBF
hyper-rectangle
, Monte Carlo method
Incomplete S14BAF
gamma functions P(a,x) and Q(a,x)
Index F06JLF
, real vector element with largest absolute value
(IDAMAX)
Index F06JMF
, complex vector element with largest absolute value ..
1-D quadrature, adaptive, D01AMF
infinite
or semi-infinite interval
1-D quadrature, adaptive, infinite or semi- D01AMF
infinite
interval
1-D quadrature, adaptive, semi- D01ASF
infinite
interval, weight function cos((omega)x) or ...
infinite
range, eigenvalue and eigenfunction, user-specified ...
Calculates standardized residuals and G02FAF
influence
statistics
Initialise G05CBF
random number generating routines to give ...
Initialise G05CCF
random number generating routines to give ...
input
data
input
data
Multivariate time series, estimation of multi- G13BEF
input
model
input
model
Input/output X04
utilities
Pseudo-random G05DYF
integer
from uniform distribution
Set up reference vector for generating pseudo-random G05ECF
integers
, Poisson distribution
Set up reference vector for generating pseudo-random G05EDF
integers
, binomial distribution
Pseudo-random permutation of an G05EHF
integer
vector
Pseudo-random sample from an G05EJF
integer
vector
Pseudo-random G05EYF
integer
from reference vector
Largest representable X02BBF
integer
Return date and time as an array of X05AAF
integers
Convert array of X05ABF
integers
representing date and time to character string
integral
, one variable
Integral E02AJF
of fitted polynomial in Chebyshev series form
Evaluation of fitted cubic spline, definite E02BDF
integral
Exponential S13AAF
integral
E (x)
1
Cosine S13ACF
integral
Ci(x)
Sine S13ADF
integral
Si(x)
Fresnel S20ACF
integral
S(x)
Fresnel S20ADF
integral
C(x)
Degenerate symmetrised elliptic S21BAF
integral
of 1st kind R (x,y)
C
Symmetrised elliptic S21BBF
integral
of 1st kind R (x,y,z)
F
Symmetrised elliptic S21BCF
integral
of 2nd kind R (x,y,z)
D
Symmetrised elliptic S21BDF
integral
of 3rd kind R (x,y,z,r)
J
1-D quadrature, D01GAF
integration
of function defined by data values, Gill-Miller ...
Numerical D01
integration
Interpolating E01BAF
functions, cubic spline interpolant, one variable
Interpolating functions, cubic spline E01BAF
interpolant
, one variable
Interpolating E01BEF
functions, monotonicity-preserving, piecewise ...
Interpolated E01BFF
values, interpolant computed by E01BEF, function ...
Interpolated values, E01BFF
interpolant
computed by E01BEF, function only, one variable
Interpolated E01BGF
values, interpolant computed by E01BEF, function ...
Interpolated values, E01BGF
interpolant
computed by E01BEF, function and 1st derivative, ...
Interpolated E01BHF
values, interpolant computed by E01BEF, definite ...
Interpolated values, E01BHF
interpolant
computed by E01BEF, definite integral, one variable
Interpolating E01DAF
functions, fitting bicubic spline, data on ...
Interpolating E01SAF
functions, method of Renka and Cline, two ...
Interpolating E01SEF
functions, modified Shepard's method, two ...
Least-squares curve cubic spline fit (including E02BAF
interpolation)
Inverse G01F
distributions
Invert M01ZAF
a permutation
iterative
refinement
iterative
refinement
ODEs, D02BBF
IVP
, Runge-Kutta-Merson method, over a range, intermediate
ODEs, D02BHF
IVP
, Runge-Kutta-Merson method, until function of solution
is ...
ODEs, D02CJF
IVP
, Adams method, until function of solution is zero, ...
ODEs, stiff D02EJF
IVP
, BDF method, until function of solution is zero, ...
Kelvin function S19ADF
kei
x
Kelvin S19AAF
function ber x
Kelvin S19ABF
function bei x
Kelvin S19ACF
function ker x
Kelvin S19ADF
function kei x
Kendall/Spearman G02BNF
non-parametric rank correlation ...
Kendall/Spearman G02BQF
non-parametric rank correlation ...
Kelvin function S19ACF
ker
x
Least-squares cubic spline curve fit, automatic E02BEF
knot
placement
knot
placement, data on rectangular grid
knot
placement, scattered data
Kruskal-Wallis G08AFF
one-way analysis of variance on k samples of ...
Mean, variance, skewness, G01AAF
kurtosis
etc, one variable, from raw data
Mean, variance, skewness, G01ADF
kurtosis
etc, one variable, from frequency table
All zeros of complex polynomial, modified C02AFF
Laguerre
method
All zeros of real polynomial, modified C02AGF
Laguerre
method
Index, real vector element with F06JLF
largest
absolute value (IDAMAX)
Index, complex vector element with F06JMF
largest
absolute value (IZAMAX)
Largest X02ALF
positive model number
Largest X02BBF
representable integer
LDL F01MCF
T
factorization of real symmetric positive-definite ...
Constructs a stem and G01ARF
leaf
plot
Least-squares E02ADF
curve fit, by polynomials, arbitrary data points
Least-squares E02AGF
polynomial fit, values and derivatives may be ...
Least-squares E02BAF
curve cubic spline fit (including interpolation)
Least-squares E02BEF
cubic spline curve fit, automatic knot placement
Least-squares E02DAF
surface fit, bicubic splines
Least-squares E02DCF
surface fit by bicubic splines with automatic ...
Least-squares E02DDF
surface fit by bicubic splines with automatic ...
Covariance matrix for nonlinear E04YCF
least-squares
problem
Least-squares F04JGF
(if rank=n) or minimal least-squares (if ...
Least-squares (if rank=n) or minimal F04JGF
least-squares
(if rank<n) solution of m real equations ...
Sparse linear F04QAF
least-squares
problem, m real equations in n unknowns
linear
problem
L -approximation by general E02GAF
1
linear
function
Linear E04MBF
programming problem
Solution of complex simultaneous F04ADF
linear
equations with multiple right-hand sides
Solution of real simultaneous F04ARF
linear
equations, one right-hand side
linear
equations, one right-hand side using iterative ...
Solution of real simultaneous F04ATF
linear
equations, one right-hand side using iterative ...
Solution of real sparse simultaneous F04AXF
linear
equations (coefficient matrix already factorized)
linear
equations, one right-hand side
Real sparse symmetric positive-definite simultaneous F04MAF
linear
equations (coefficient matrix already factorized by ...
Real sparse symmetric simultaneous F04MBF
linear
equations
linear
equations (coefficient matrix already factorized by ...
Sparse F04QAF
linear
least-squares problem, m real equations in n ...
Solution of real system of F07AEF
linear
equations, multiple right-hand sides, matrix already ..
linear
equations, multiple right-hand sides, matrix already ..
Simple G02CAF
linear
regression with constant term, no missing values
Fits a general (multiple) G02DAF
linear
regression model
Fits a general G02DGF
linear
regression model for new dependent variable
Computes estimable function of a general G02DNF
linear
regression model and its standard error
Fits a generalized G02GBF
linear
model with binomial errors
Fits a generalized G02GCF
linear
model with Poisson errors
Basic F06
Linear
Algebra Subprograms
2nd order Sturm- D02KEF
Liouville
problem, regular/singular system, finite/infinite ...
Computes orthogonal rotations for G03BAF
loading
matrix, generalized orthomax criterion
Location G08
tests
Log S14ABF
Gamma function
algebraico-
logarithmic
type
Computes upper and G01EEF
lower
tail and probability density function probabilities for
LU F01BRF
factorization of real sparse matrix
LU F01BSF
factorization of real sparse matrix with known sparsity
LU F07ADF
factorization of real m by n matrix (DGETRF)
Machine X02AJF
precision
Machine X02
Constants
Performs the G08AHF
Mann-Whitney
U test on two independent samples
Computes the exact probabilities for the G08AJF
Mann-Whitney
U statistic, no ties in pooled sample
Computes the exact probabilities for the G08AKF
Mann-Whitney
U statistic, ties in pooled sample
Friedman two-way analysis of variance on k G08AEF
matched
samples
Performs the Wilcoxon one-sample ( G08AGF
matched
pairs) signed rank test
Mathematical X01
Constants
Maximization E04
Maximum X02BEF
number of decimal digits that can be represented
Mean G01AAF
, variance, skewness, kurtosis etc, one variable, from
Mean G01ADF
, variance, skewness, kurtosis etc, one variable, from
Computes a five-point summary ( G01ALF
median
, hinges and extremes)
Median G08ACF
test on two samples of unequal size
ODEs, IVP, Runge-Kutta- D02BBF
Merson
method, over a range, intermediate output
ODEs, IVP, Runge-Kutta- D02BHF
Merson
method, until function of solution is zero (simple ...
Evaluation of a fitted bicubic spline at a E02DFF
mesh
of points
Miller
method
Least-squares (if rank=n) or F04JGF
minimal
least-squares (if rank<n) solution of m real ...
Minimization E04
Unconstrained E04DGF
minimum
, pre-conditioned conjugate gradient algorithm, ...
Unconstrained E04FDF
minimum
of a sum of squares, combined Gauss-Newton and ...
Unconstrained E04GCF
minimum
of a sum of squares, combined Gauss-Newton and ...
Minimum E04JAF
, function of several variables, quasi-Newton ...
Minimum E04UCF
, function of several variables, sequential QP method,
missing
values, overwriting input data
missing
values, preserving input data
Simple linear regression with constant term, no G02CAF
missing
values
Fits a general (multiple) linear regression G02DAF
model
Fits a general linear regression G02DGF
model
for new dependent variable
model
and its standard error
Fits a generalized linear G02GBF
model
with binomial errors
Fits a generalized linear G02GCF
model
with Poisson errors
model
model
Univariate time series, estimation, seasonal ARIMA G13AFF
model
model
model
model
Multivariate time series, estimation of multi-input G13BEF
model
model
Smallest positive X02AKF
model
number
Largest positive X02ALF
model
number
Parameter of floating-point arithmetic X02BHF
model
, b
Parameter of floating-point arithmetic X02BJF
model
, p
Parameter of floating-point arithmetic X02BKF
model
, e
min
Parameter of floating-point arithmetic X02BLF
model
, e
max
Parameter of floating-point arithmetic X02DJF
model
, ROUNDS
All zeros of complex polynomial, C02AFF
modified
Laguerre method
All zeros of real polynomial, C02AGF
modified
Laguerre method
Interpolating functions, E01SEF
modified
Shepard's method, two variables
modified
Newton algorithm using function values only ...
Modified S18ACF
Bessel function K (x)
0
Modified S18ADF
Bessel function K (x)
1
Modified S18AEF
Bessel function I (x)
0
Modified S18AFF
Bessel function I (x)
1
Modified S18DCF
Bessel functions K (z), real ...
(nu)+n
Modified S18DEF
Bessel functions I (z), real ...
(nu)+n
Interpolating functions, E01BEF
monotonicity-preserving
, piecewise cubic Hermite, one variable
Multi-dimensional quadrature over hyper-rectangle, D01GBF
Monte
Carlo method
Multi-dimensional D01FCF
adaptive quadrature over hyper-rectangle
Multi-dimensional D01GBF
quadrature over hyper-rectangle, Monte ...
Multivariate time series, estimation of G13BEF
multi-input
model
multi-input
model
multigrid
technique
Multiple C06FPF
1-D real discrete Fourier transforms
Multiple C06FQF
1-D Hermitian discrete Fourier transforms
Multiple C06FRF
1-D complex discrete Fourier transforms
Complex conjugate of C06GQF
multiple
Hermitian sequences
multiple
right-hand sides
Solves a system of equations with F06YJF
multiple
right-hand sides, real triangular coefficient matrix ..
Solves system of equations with F06ZJF
multiple
right-hand sides, complex triangular coefficient ...
Solution of real system of linear equations, F07AEF
multiple
right-hand sides, matrix already factorized by ...
multiple
right-hand sides, matrix already factorized by ...
Fits a general ( G02DAF
multiple)
linear regression model
Multiply F06EDF
real vector by scalar (DSCAL)
Multiply F06GDF
complex vector by complex scalar (ZSCAL)
Multiply F06JDF
complex vector by real scalar (ZDSCAL)
Set up reference vector for G05EAF
multivariate
Normal distribution
Pseudo-random G05EZF
multivariate
Normal vector from reference vector
Generates a realisation of a G05HDF
multivariate
time series from a VARMA model
Multivariate G13BAF
time series, filtering (pre-whitening) by an ...
Multivariate G13BCF
time series, cross-correlations
Multivariate G13BDF
time series, preliminary estimation of transfer ...
Multivariate G13BEF
time series, estimation of multi-input model
Multivariate G13BJF
time series, state set and forecasts from fully ...
Multivariate G13CDF
time series, smoothed sample cross spectrum ...
Generates a vector of random numbers from an ( G05FBF
negative)
exponential distribution
Newton
and modified Newton algorithm using function values ...
Newton
algorithm using function values only
Newton
and quasi-Newton algorithm, using 1st derivatives
Newton
algorithm, using 1st derivatives
Minimum, function of several variables, quasi- E04JAF
Newton
algorithm, simple bounds, using function values only
Kendall/Spearman G02BNF
non-parametric
rank correlation coefficients, no missing ...
Kendall/Spearman G02BQF
non-parametric
rank correlation coefficients, no missing ...
Initialise random number generating routines to give G05CCF
non-repeatable
sequence
Univariate time series, seasonal and G13AAF
non-seasonal
differencing
Non-parametric G08
tests
Solution of system of C05NBF
nonlinear
equations using function values only
Solution of system of C05PBF
nonlinear
equations using 1st derivatives
nonlinear
problem
ODEs, general D02RAF
nonlinear
boundary value problem, finite difference technique ...
nonlinear
constraints, using function values and optionally ...
Covariance matrix for E04YCF
nonlinear
least-squares problem
Nonlinear E04
optimization
Nonlinear E04
regression
Compute Euclidean F06EJF
norm
of real vector (DNRM2)
Compute Euclidean F06JJF
norm
of complex vector (DZNRM2)
Computes probabilities for the standard G01EAF
Normal
distribution
Computes deviates for the standard G01FAF
Normal
distribution
Computes probability for the bivariate G01HAF
Normal
distribution
Pseudo-random real numbers, G05DDF
Normal
distribution
Set up reference vector for multivariate G05EAF
Normal
distribution
Pseudo-random multivariate G05EZF
Normal
vector from reference vector
Generates a vector of random numbers from a G05FDF
Normal
distribution
Numerical D01
integration
ODEs D02BBF
, IVP, Runge-Kutta-Merson method, over a range, ...
ODEs D02BHF
, IVP, Runge-Kutta-Merson method, until function of ...
ODEs D02CJF
, IVP, Adams method, until function of solution is
zero, ...
ODEs D02EJF
, stiff IVP, BDF method, until function of solution is
ODEs D02GAF
, boundary value problem, finite difference technique .
ODEs D02GBF
, boundary value problem, finite difference technique .
ODEs D02RAF
, general nonlinear boundary value problem, finite ...
Kruskal-Wallis G08AFF
one-way
analysis of variance on k samples of unequal size
Performs the Wilcoxon G08AGF
one-sample
(matched pairs) signed rank test
Operations F01QDF
H
with orthogonal matrices, compute QB or Q B ...
Operations F01QEF
with orthogonal matrices, form columns of Q ...
Operations F01RDF
H
with unitary matrices, compute QB or Q B ...
Operations F01REF
with unitary matrices, form columns of Q after ...
Nonlinear E04
optimization
Operations with F01QDF
orthogonal
T
matrices, compute QB or Q B after ...
Operations with F01QEF
orthogonal
matrices, form columns of Q after factorization ...
Computes G03BAF
orthogonal
rotations for loading matrix, generalized orthomax ...
orthomax
criterion
oscillating
functions
Incomplete gamma functions S14BAF
P(a,x)
and Q(a,x)
Matrix-vector product, real symmetric F06PEF
packed
matrix (DSPMV)
Matrix-vector product, real triangular F06PHF
packed
matrix (DTPMV)
System of equations, real triangular F06PLF
packed
matrix (DTPSV)
Rank-1 update, real symmetric F06PQF
packed
matrix (DSPR)
Rank-2 update, real symmetric F06PSF
packed
matrix (DSPR2)
Matrix-vector product, complex Hermitian F06SEF
packed
matrix (ZHPMV)
Matrix-vector product, complex triangular F06SHF
packed
matrix (ZTPMV)
System of equations, complex triangular F06SLF
packed
matrix (ZTPSV)
Rank-1 update, complex Hermitian F06SQF
packed
matrix (ZHPR)
Rank-2 update, complex Hermitian F06SSF
packed
matrix (ZHPR2)
Sign test on two G08AAF
paired
samples
Performs the Wilcoxon one-sample (matched G08AGF
pairs)
signed rank test
Kendall/Spearman non- G02BNF
parametric
rank correlation coefficients, no missing values, ...
Kendall/Spearman non- G02BQF
parametric
rank correlation coefficients, no missing values, ...
Non- G08
parametric
tests
Univariate time series, G13ACF
partial
autocorrelations from autocorrelations
Elliptic D03EDF
PDE
, solution of finite difference equations by a
multigrid ...
Discretize a 2nd order elliptic D03EEF
PDE
on a rectangle
Elliptic D03FAF
PDE
, Helmholtz equation, 3-D Cartesian co-ordinates
Pseudo-random G05EHF
permutation
of an integer vector
Invert a M01ZAF
permutation
Interpolating functions, monotonicity-preserving, E01BEF
piecewise
cubic Hermite, one variable
Piessens
and de Doncker, allowing for badly-behaved integrands
Generate real F06AAF
plane
rotation (DROTG)
Apply real F06EPF
plane
rotation (DROT)
Constructs a stem and leaf G01ARF
plot
Fits a generalized linear model with G02GCF
Poisson
errors
Poisson
distribution
All zeros of complex C02AFF
polynomial
, modified Laguerre method
All zeros of real C02AGF
polynomial
, modified Laguerre method
Least-squares curve fit, by E02ADF
polynomials
, arbitrary data points
Evaluation of fitted E02AEF
polynomial
in one variable from Chebyshev series form ...
Least-squares E02AGF
polynomial
fit, values and derivatives may be constrained, ...
Derivative of fitted E02AHF
polynomial
in Chebyshev series form
Integral of fitted E02AJF
polynomial
in Chebyshev series form
Evaluation of fitted E02AKF
polynomial
in one variable, from Chebyshev series form
pooled
sample
pooled
sample
Pre-computed D01BBF
weights and abscissae for Gaussian quadrature ...
Unconstrained minimum, E04DGF
pre-conditioned
conjugate gradient algorithm, function of ...
Multivariate time series, filtering ( G13BAF
pre-whitening)
by an ARIMA model
Machine X02AJF
precision
Univariate time series, G13ADF
preliminary
estimation, seasonal ARIMA model
Multivariate time series, G13BDF
preliminary
estimation of transfer function model
principal
value (Hilbert transform)
Performs G03AAF
principal
component analysis
Print X04CAF
a real general matrix
Print X04DAF
a complex general matrix
Computes G01EAF
probabilities
for the standard Normal distribution
Computes G01EBF
probabilities
for Student's t-distribution
Computes G01ECF
probabilities
2
for (chi) distribution
Computes G01EDF
probabilities
for F-distribution
Computes upper and lower tail and G01EEF
probability
density function probabilities for the beta ...
probabilities
for the beta distribution
Computes G01EFF
probabilities
for the gamma distribution
Computes G01HAF
probability
for the bivariate Normal distribution
probability
distribution function
Computes the exact G08AJF
probabilities
for the Mann-Whitney U statistic, no ties in ...
Computes the exact G08AKF
probabilities
for the Mann-Whitney U statistic, ties in ...
Dot F06EAF
product
of two real vectors (DDOT)
Dot F06GAF
product
of two complex vectors, unconjugated (ZDOTU)
Dot F06GBF
product
of two complex vectors, conjugated (ZDOTC)
Matrix-vector F06PAF
product
, real rectangular matrix (DGEMV)
Matrix-vector F06PBF
product
, real rectangular band matrix (DGBMV)
Matrix-vector F06PCF
product
, real symmetric matrix (DSYMV)
Matrix-vector F06PDF
product
, real symmetric band matrix (DSBMV)
Matrix-vector F06PEF
product
, real symmetric packed matrix (DSPMV)
Matrix-vector F06PFF
product
, real triangular matrix (DTRMV)
Matrix-vector F06PGF
product
, real triangular band matrix (DTBMV)
Matrix-vector F06PHF
product
, real triangular packed matrix (DTPMV)
Matrix-vector F06SAF
product
, complex rectangular matrix (ZGEMV)
Matrix-vector F06SBF
product
, complex rectangular band matrix (ZGBMV)
Matrix-vector F06SCF
product
, complex Hermitian matrix (ZHEMV)
Matrix-vector F06SDF
product
, complex Hermitian band matrix (ZHBMV)
Matrix-vector F06SEF
product
, complex Hermitian packed matrix (ZHPMV)
Matrix-vector F06SFF
product
, complex triangular matrix (ZTRMV)
Matrix-vector F06SGF
product
, complex triangular band matrix (ZTBMV)
Matrix-vector F06SHF
product
, complex triangular packed matrix (ZTPMV)
Matrix-matrix F06YAF
product
, two real rectangular matrices (DGEMM)
Matrix-matrix F06YCF
product
, one real symmetric matrix, one real rectangular ...
Matrix-matrix F06YFF
product
, one real triangular matrix, one real rectangular ...
Matrix-matrix F06ZAF
product
, two complex rectangular matrices (ZGEMM)
Matrix-matrix F06ZCF
product
, one complex Hermitian matrix, one complex ...
Matrix-matrix F06ZFF
product
, one complex triangular matrix, one complex ...
Matrix-matrix F06ZTF
product
, one complex symmetric matrix, one complex ...
Linear E04MBF
programming
problem
Pseudo-random G05CAF
real numbers, uniform distribution over (0,1)
Pseudo-random G05DDF
real numbers, Normal distribution
Pseudo-random G05DFF
real numbers, Cauchy distribution
Pseudo-random G05DPF
real numbers, Weibull distribution
Pseudo-random G05DYF
integer from uniform distribution
Pseudo-random G05DZF
logical (boolean) value
Set up reference vector for generating G05ECF
pseudo-random
integers, Poisson distribution
Set up reference vector for generating G05EDF
pseudo-random
integers, binomial distribution
Pseudo-random G05EHF
permutation of an integer vector
Pseudo-random G05EJF
sample from an integer vector
Pseudo-random G05EYF
integer from reference vector
Pseudo-random G05EZF
multivariate Normal vector from reference vector
Generates a vector of G05FEF
pseudo-random
numbers from a beta distribution
Generates a vector of G05FFF
pseudo-random
numbers from a gamma distribution
Incomplete gamma functions P(a,x) and S14BAF
Q(a,x)
QP E04NAF
problem
Minimum, function of several variables, sequential E04UCF
QP
method, nonlinear constraints, using function values
and ...
QR F01QCF
factorization of real m by n matrix (m<=n)
QR F01RCF
factorization of complex m by n matrix (m<=n)
1-D D01AJF
quadrature
, adaptive, finite interval, strategy due to ...
1-D D01AKF
quadrature
, adaptive, finite interval, method suitable for ...
1-D D01ALF
quadrature
, adaptive, finite interval, allowing for ...
1-D D01AMF
quadrature
, adaptive, infinite or semi-infinite interval
1-D D01ANF
quadrature
, adaptive, finite interval, weight function
cos((omega)x) ...
1-D D01APF
quadrature
, adaptive, finite interval, weight function with ...
1-D D01AQF
quadrature
, adaptive, finite interval, weight function ...
1-D D01ASF
quadrature
, adaptive, semi-infinite interval, weight function ...
Pre-computed weights and abscissae for Gaussian D01BBF
quadrature
rules, restricted choice of rule
Multi-dimensional adaptive D01FCF
quadrature
over hyper-rectangle
1-D D01GAF
quadrature
, integration of function defined by data values, ...
Multi-dimensional D01GBF
quadrature
over hyper-rectangle, Monte Carlo method
quasi-Newton
algorithm, using 1st derivatives
Minimum, function of several variables, E04JAF
quasi-Newton
algorithm, simple bounds, using function values ...
QZ
algorithm, real matrices
Pseudo- G05CAF
random
real numbers, uniform distribution over (0,1)
Initialise G05CBF
random
number generating routines to give repeatable sequence
Initialise G05CCF
random
number generating routines to give non-repeatable ...
Save state of G05CFF
random
number generating routines
Restore state of G05CGF
random
number generating routines
Pseudo- G05DDF
random
real numbers, Normal distribution
Pseudo- G05DFF
random
real numbers, Cauchy distribution
Pseudo- G05DPF
random
real numbers, Weibull distribution
Pseudo- G05DYF
random
integer from uniform distribution
Pseudo- G05DZF
random
logical (boolean) value
Set up reference vector for generating pseudo- G05ECF
random
integers, Poisson distribution
Set up reference vector for generating pseudo- G05EDF
random
integers, binomial distribution
Pseudo- G05EHF
random
permutation of an integer vector
Pseudo- G05EJF
random
sample from an integer vector
Pseudo- G05EYF
random
integer from reference vector
Pseudo- G05EZF
random
multivariate Normal vector from reference vector
Generates a vector of G05FAF
random
numbers from a uniform distribution
Generates a vector of G05FBF
random
numbers from an (negative) exponential distribution
Generates a vector of G05FDF
random
numbers from a Normal distribution
Generates a vector of pseudo- G05FEF
random
numbers from a beta distribution
Generates a vector of pseudo- G05FFF
random
numbers from a gamma distribution
ODEs, IVP, Runge-Kutta-Merson method, over a D02BBF
range
, intermediate output
range
, eigenvalue and eigenfunction, user-specified ...
Safe X02AMF
range
of floating-point arithmetic
Safe X02ANF
range
of complex floating-point arithmetic
Least-squares (if F04JGF
rank=n)
or minimal least-squares (if rank<n) ...
rank
<n) solution of m real equations in n unknowns, ...
rank
<=n,m>=n
Rank-1 F06PMF
update, real rectangular matrix (DGER)
Rank-1 F06PPF
update, real symmetric matrix (DSYR)
Rank-1 F06PQF
update, real symmetric packed matrix (DSPR)
Rank-2 F06PRF
update, real symmetric matrix (DSYR2)
Rank-2 F06PSF
update, real symmetric packed matrix (DSPR2)
Rank-1 F06SMF
update, complex rectangular matrix, unconjugated ...
Rank-1 F06SNF
update, complex rectangular matrix, conjugated vector .
Rank-1 F06SPF
update, complex Hermitian matrix (ZHER)
Rank-1 F06SQF
update, complex Hermitian packed matrix (ZHPR)
Rank-2 F06SRF
update, complex Hermitian matrix (ZHER2)
Rank-2 F06SSF
update, complex Hermitian packed matrix (ZHPR2)
Rank-k F06YPF
update of a real symmetric matrix (DSYRK)
Rank-2k F06YRF
update of a real symmetric matrix (DSYR2K)
Rank-k F06ZPF
update of a complex Hermitian matrix (ZHERK)
Rank-2k F06ZRF
update of a complex Hermitian matrix (ZHER2K)
Rank-k F06ZUF
update of a complex symmetric matrix (ZSYRK)
Rank-2k F06ZWF
update of a complex symmetric matrix (ZHER2K)
Kendall/Spearman non-parametric G02BNF
rank
correlation coefficients, no missing values,
overwriting ...
Kendall/Spearman non-parametric G02BQF
rank
correlation coefficients, no missing values, preserving
rank
test
Rank M01DAF
a vector, real numbers
Rank M01DEF
rows of a matrix, real numbers
Rank M01DJF
columns of a matrix, real numbers
Rearrange a vector according to given M01EAF
ranks
, real numbers
Generates a G05HDF
realisation
of a multivariate time series from a VARMA model
Rearrange M01EAF
a vector according to given ranks, real numbers
Multi-dimensional adaptive quadrature over hyper- D01FCF
rectangle
Multi-dimensional quadrature over hyper- D01GBF
rectangle
, Monte Carlo method
Discretize a 2nd order elliptic PDE on a D03EEF
rectangle
rectangular
grid
rectangular
grid
Matrix-vector product, real F06PAF
rectangular
matrix (DGEMV)
Matrix-vector product, real F06PBF
rectangular
band matrix (DGBMV)
Rank-1 update, real F06PMF
rectangular
matrix (DGER)
Matrix-vector product, complex F06SAF
rectangular
matrix (ZGEMV)
Matrix-vector product, complex F06SBF
rectangular
band matrix (ZGBMV)
Rank-1 update, complex F06SMF
rectangular
matrix, unconjugated vector (ZGERU)
Rank-1 update, complex F06SNF
rectangular
matrix, conjugated vector (ZGERC)
Matrix-matrix product, two real F06YAF
rectangular
matrices (DGEMM)
rectangular
matrix (DSYMM)
rectangular
matrix (DTRMM)
Matrix-matrix product, two complex F06ZAF
rectangular
matrices (ZGEMM)
rectangular
matrix (ZHEMM)
rectangular
matrix (ZTRMM)
rectangular
matrix (ZSYMM)
Set up G05EAF
reference
vector for multivariate Normal distribution
Set up G05ECF
reference
vector for generating pseudo-random integers, ...
Set up G05EDF
reference
vector for generating pseudo-random integers, ...
Set up G05EXF
reference
vector from supplied cumulative distribution ...
Pseudo-random integer from G05EYF
reference
vector
Pseudo-random multivariate Normal vector from G05EZF
reference
vector
refinement
refinement
Simple linear G02CAF
regression
with constant term, no missing values
Fits a general (multiple) linear G02DAF
regression
model
Fits a general linear G02DGF
regression
model for new dependent variable
Computes estimable function of a general linear G02DNF
regression
model and its standard error
Nonlinear E04
regression
2nd order Sturm-Liouville problem, D02KEF
regular/singular
system, finite/infinite range, eigenvalue ...
Interpolating functions, method of E01SAF
Renka
and Cline, two variables
Calculates standardized G02FAF
residuals
and influence statistics
Univariate time series, diagnostic checking of G13ASF
residuals
, following G13AFF
right-hand
sides
Solution of real simultaneous linear equations, one F04ARF
right-hand
side
right-hand
side using iterative refinement
Solution of real simultaneous linear equations, one F04ATF
right-hand
side using iterative refinement
right-hand
side
Solves a system of equations with multiple F06YJF
right-hand
sides, real triangular coefficient matrix (DTRSM)
Solves system of equations with multiple F06ZJF
right-hand
sides, complex triangular coefficient matrix (ZTRSM)
Solution of real system of linear equations, multiple F07AEF
right-hand
sides, matrix already factorized by F07ADF (DGETRS)
right-hand
sides, matrix already factorized by F07FDF (DPOTRS)
Generate real plane F06AAF
rotation
(DROTG)
Apply real plane F06EPF
rotation
(DROT)
Computes orthogonal G03BAF
rotations
for loading matrix, generalized orthomax criterion
rules
, restricted choice of rule
rule
ODEs, IVP, D02BBF
Runge-Kutta-Merson
method, over a range, intermediate output
ODEs, IVP, D02BHF
Runge-Kutta-Merson
method, until function of solution is zero ...
Safe X02AMF
range of floating-point arithmetic
Safe X02ANF
range of complex floating-point arithmetic
Pseudo-random G05EJF
sample
from an integer vector
Sign test on two paired G08AAF
samples
Median test on two G08ACF
samples
of unequal size
Friedman two-way analysis of variance on k matched G08AEF
samples
Kruskal-Wallis one-way analysis of variance on k G08AFF
samples
of unequal size
Performs the Wilcoxon one- G08AGF
sample
(matched pairs) signed rank test
Performs the Mann-Whitney U test on two independent G08AHF
samples
sample
sample
Univariate time series, G13ABF
sample
autocorrelation function
Univariate time series, smoothed G13CBF
sample
spectrum using spectral smoothing by the trapezium ...
Multivariate time series, smoothed G13CDF
sample
cross spectrum using spectral smoothing by the ...
Add F06ECF
scalar
times real vector to real vector (DAXPY)
Multiply real vector by F06EDF
scalar
(DSCAL)
Add F06GCF
scalar
times complex vector to complex vector (ZAXPY)
Multiply complex vector by complex F06GDF
scalar
(ZSCAL)
Multiply complex vector by real F06JDF
scalar
(ZDSCAL)
scattered
data
Univariate time series, G13AAF
seasonal
and non-seasonal differencing
Univariate time series, seasonal and non- G13AAF
seasonal
differencing
Univariate time series, preliminary estimation, G13ADF
seasonal
ARIMA model
Univariate time series, estimation, G13AFF
seasonal
ARIMA model
seasonal
ARIMA model
1-D quadrature, adaptive, infinite or D01AMF
semi-infinite
interval
1-D quadrature, adaptive, D01ASF
semi-infinite
interval, weight function cos((omega)x) ...
Complex conjugate of Hermitian C06GBF
sequence
Complex conjugate of complex C06GCF
sequence
Complex conjugate of multiple Hermitian C06GQF
sequences
Convert Hermitian C06GSF
sequences
to general complex sequences
Convert Hermitian sequences to general complex C06GSF
sequences
sequence
sequence
Minimum, function of several variables, E04UCF
sequential
QP method, nonlinear constraints, using function ...
Interpolating functions, modified E01SEF
Shepard's
method, two variables
Sign G08AAF
test on two paired samples
Performs the Wilcoxon one-sample (matched pairs) G08AGF
signed
rank test
Solution of complex F04ADF
simultaneous
linear equations with multiple right-hand sides
Solution of real F04ARF
simultaneous
linear equations, one right-hand side
Solution of real symmetric positive-definite F04ASF
simultaneous
linear equations, one right-hand side using ...
Solution of real F04ATF
simultaneous
linear equations, one right-hand side using ...
Solution of real sparse F04AXF
simultaneous
linear equations (coefficient matrix already ...
simultaneous
linear equations, one right-hand side
Real sparse symmetric positive-definite F04MAF
simultaneous
linear equations (coefficient matrix already ...
Real sparse symmetric F04MBF
simultaneous
linear equations
simultaneous
linear equations (coefficient matrix already ...
sin
((omega)x)
sin
((omega)x)
Sine S13ADF
integral Si(x)
2nd order Sturm-Liouville problem, regular/ D02KEF
singular
system, finite/infinite range, eigenvalue and ...
singularities
at user-specified break-points
singularities
of algebraico-logarithmic type
Mean, variance, G01AAF
skewness
, kurtosis etc, one variable, from raw data
Mean, variance, G01ADF
skewness
, kurtosis etc, one variable, from frequency table
Smallest X02AKF
positive model number
Univariate time series, G13CBF
smoothed
sample spectrum using spectral smoothing by the ...
smoothing
by the trapezium frequency (Daniell) window
Multivariate time series, G13CDF
smoothed
sample cross spectrum using spectral smoothing by ...
smoothing
by the trapezium frequency (Daniell) window
Sort E02ZAF
2-D data into panels for fitting bicubic splines
Sort M01CAF
a vector, real numbers
LU factorization of real F01BRF
sparse
matrix
LU factorization of real F01BSF
sparse
matrix with known sparsity pattern
LU factorization of real sparse matrix with known F01BSF
sparsity
pattern
T
LL factorization of real F01MAF
sparse
symmetric positive-definite matrix
Selected eigenvalues and eigenvectors of F02FJF
sparse
symmetric eigenproblem
Solution of real F04AXF
sparse
simultaneous linear equations (coefficient matrix ...
Real F04MAF
sparse
symmetric positive-definite simultaneous linear ...
Real F04MBF
sparse
symmetric simultaneous linear equations
Sparse F04QAF
linear least-squares problem, m real equations in ...
Kendall/ G02BNF
Spearman
non-parametric rank correlation coefficients, no ...
Kendall/ G02BQF
Spearman
non-parametric rank correlation coefficients, no ...
Approximation of S
special
functions
Univariate time series, smoothed sample G13CBF
spectrum
using spectral smoothing by the trapezium frequency ...
spectral
smoothing by the trapezium frequency (Daniell) window
Multivariate time series, smoothed sample cross G13CDF
spectrum
using spectral smoothing by the trapezium frequency ...
spectral
smoothing by the trapezium frequency (Daniell) window
Interpolating functions, cubic E01BAF
spline
interpolant, one variable
Interpolating functions, fitting bicubic E01DAF
spline
, data on rectangular grid
Least-squares curve cubic E02BAF
spline
fit (including interpolation)
Evaluation of fitted cubic E02BBF
spline
, function only
Evaluation of fitted cubic E02BCF
spline
, function and derivatives
Evaluation of fitted cubic E02BDF
spline
, definite integral
Least-squares cubic E02BEF
spline
curve fit, automatic knot placement
Least-squares surface fit, bicubic E02DAF
splines
Least-squares surface fit by bicubic E02DCF
splines
with automatic knot placement, data on rectangular grid
Least-squares surface fit by bicubic E02DDF
splines
with automatic knot placement, scattered data
Evaluation of a fitted bicubic E02DEF
spline
at a vector of points
Evaluation of a fitted bicubic E02DFF
spline
at a mesh of points
Sort 2-D data into panels for fitting bicubic E02ZAF
splines
B- E02
splines
Least- E02ADF
squares
curve fit, by polynomials, arbitrary data points
Least- E02AGF
squares
polynomial fit, values and derivatives may be ...
Least- E02BAF
squares
curve cubic spline fit (including interpolation)
Least- E02BEF
squares
cubic spline curve fit, automatic knot placement
Least- E02DAF
squares
surface fit, bicubic splines
Least- E02DCF
squares
surface fit by bicubic splines with automatic knot ...
Least- E02DDF
squares
surface fit by bicubic splines with automatic knot ...
Unconstrained minimum of a sum of E04FDF
squares
, combined Gauss-Newton and modified Newton algorithm .
Unconstrained minimum of a sum of E04GCF
squares
, combined Gauss-Newton and quasi-Newton algorithm, ...
Covariance matrix for nonlinear least- E04YCF
squares
problem
Least- F04JGF
squares
(if rank=n) or minimal least-squares (if ...
Least-squares (if rank=n) or minimal least- F04JGF
squares
(if rank<n) solution of m real equations in n ...
Sparse linear least- F04QAF
squares
problem, m real equations in n unknowns
Computes probabilities for the G01EAF
standard
Normal distribution
Computes deviates for the G01FAF
standard
Normal distribution
standard
error
2
Performs the (chi) goodness of fit test, for G08CGF
standard
continuous distributions
Calculates G02FAF
standardized
residuals and influence statistics
Calculates standardized residuals and influence G02FAF
statistics
statistic
, no ties in pooled sample
statistic
, ties in pooled sample
Constructs a G01ARF
stem
and leaf plot
ODEs, D02EJF
stiff
IVP, BDF method, until function of solution is zero, ..
Computes probabilities for G01EBF
Student's
t-distribution
Computes deviates for G01FBF
Student's
t-distribution
2nd order D02KEF
Sturm-Liouville
problem, regular/singular system, ...
Basic Linear Algebra F06
Subprograms
Unconstrained minimum of a E04FDF
sum
of squares, combined Gauss-Newton and modified Newton .
Unconstrained minimum of a E04GCF
sum
of squares, combined Gauss-Newton and quasi-Newton ...
Sum F06EKF
the absolute values of real vector elements (DASUM)
Sum F06JKF
the absolute values of complex vector elements (DZASUM)
Computes a five-point G01ALF
summary
(median, hinges and extremes)
Least-squares E02DAF
surface
fit, bicubic splines
Least-squares E02DCF
surface
fit by bicubic splines with automatic knot placement, .
Least-squares E02DDF
surface
fit by bicubic splines with automatic knot placement, .
SVD F02WEF
of real matrix
SVD F02XEF
of complex matrix
Swap F06EGF
two real vectors (DSWAP)
Swap F06GGF
two complex vectors (ZSWAP)
Fresnel integral S20ACF
S(x)
T
LL factorization of real sparse F01MAF
symmetric
positive-definite matrix
T
LDL factorization of real F01MCF
symmetric
positive-definite variable-bandwidth matrix
All eigenvalues of real F02AAF
symmetric
matrix
All eigenvalues and eigenvectors of real F02ABF
symmetric
matrix
symmetric
and B is positive-definite
symmetric
and B is positive-definite
Selected eigenvalues and eigenvectors of real F02BBF
symmetric
matrix
Selected eigenvalues and eigenvectors of sparse F02FJF
symmetric
eigenproblem
Solution of real F04ASF
symmetric
positive-definite simultaneous linear equations, ...
Solution of real F04FAF
symmetric
positive-definite tridiagonal simultaneous linear ...
Real sparse F04MAF
symmetric
positive-definite simultaneous linear equations ...
Real sparse F04MBF
symmetric
simultaneous linear equations
Solution of real F04MCF
symmetric
positive-definite variable-bandwidth simultaneous ...
Matrix-vector product, real F06PCF
symmetric
matrix (DSYMV)
Matrix-vector product, real F06PDF
symmetric
band matrix (DSBMV)
Matrix-vector product, real F06PEF
symmetric
packed matrix (DSPMV)
Rank-1 update, real F06PPF
symmetric
matrix (DSYR)
Rank-1 update, real F06PQF
symmetric
packed matrix (DSPR)
Rank-2 update, real F06PRF
symmetric
matrix (DSYR2)
Rank-2 update, real F06PSF
symmetric
packed matrix (DSPR2)
Matrix-matrix product, one real F06YCF
symmetric
matrix, one real rectangular matrix (DSYMM)
Rank-k update of a real F06YPF
symmetric
matrix (DSYRK)
Rank-2k update of a real F06YRF
symmetric
matrix (DSYR2K)
Matrix-matrix product, one complex F06ZTF
symmetric
matrix, one complex rectangular matrix (ZSYMM)
Rank-k update of a complex F06ZUF
symmetric
matrix (ZSYRK)
Rank-2k update of a complex F06ZWF
symmetric
matrix (ZHER2K)
Cholesky factorization of real F07FDF
symmetric
positive-definite matrix (DPOTRF)
Solution of real F07FEF
symmetric
positive-definite system of linear equations, ...
Degenerate S21BAF
symmetrised
elliptic integral of 1st kind R (x,y)
C
Symmetrised S21BBF
elliptic integral of 1st kind R (x,y,z)
F
Symmetrised S21BCF
elliptic integral of 2nd kind R (x,y,z)
D
Symmetrised S21BDF
elliptic integral of 3rd kind R (x,y,z,r)
J
Solution of C05NBF
system
of nonlinear equations using function values only
Solution of C05PBF
system
of nonlinear equations using 1st derivatives
2nd order Sturm-Liouville problem, regular/singular D02KEF
system
, finite/infinite range, eigenvalue and eigenfunction,
System F06PJF
of equations, real triangular matrix (DTRSV)
System F06PKF
of equations, real triangular band matrix (DTBSV)
System F06PLF
of equations, real triangular packed matrix (DTPSV)
System F06SJF
of equations, complex triangular matrix (ZTRSV)
System F06SKF
of equations, complex triangular band matrix (ZTBSV)
System F06SLF
of equations, complex triangular packed matrix (ZTPSV)
Solves a F06YJF
system
of equations with multiple right-hand sides, real ...
Solves F06ZJF
system
of equations with multiple right-hand sides, complex ..
Solution of real F07AEF
system
of linear equations, multiple right-hand sides, matrix
Solution of real symmetric positive-definite F07FEF
system
of linear equations, multiple right-hand sides, matrix
Computes probabilities for Student's G01EBF
t-distribution
Computes deviates for Student's G01FBF
t-distribution
table
Frequency G01AEF
table
from raw data
Two-way contingency G01AFF
table
2
analysis, with (chi) /Fisher's exact test
Computes upper and lower G01EEF
tail
and probability density function probabilities for the
2
test
Sign G08AAF
test
on two paired samples
Median G08ACF
test
on two samples of unequal size
test
Performs the Mann-Whitney U G08AHF
test
on two independent samples
2
Performs the (chi) goodness of fit G08CGF
test
, for standard continuous distributions
Goodness of fit G08
tests
Location G08
tests
Non-parametric G08
tests
ties
in pooled sample
ties
in pooled sample
Generates a realisation of a multivariate G05HDF
time
series from a VARMA model
Univariate G13AAF
time
series, seasonal and non-seasonal differencing
Univariate G13ABF
time
series, sample autocorrelation function
Univariate G13ACF
time
series, partial autocorrelations from autocorrelations
Univariate G13ADF
time
series, preliminary estimation, seasonal ARIMA model
Univariate G13AFF
time
series, estimation, seasonal ARIMA model
Univariate G13AGF
time
series, update state set for forecasting
Univariate G13AHF
time
series, forecasting from state set
Univariate G13AJF
time
series, state set and forecasts, from fully specified .
Univariate G13ASF
time
series, diagnostic checking of residuals, following
G13AFF
Multivariate G13BAF
time
series, filtering (pre-whitening) by an ARIMA model
Multivariate G13BCF
time
series, cross-correlations
Multivariate G13BDF
time
series, preliminary estimation of transfer function
model
Multivariate G13BEF
time
series, estimation of multi-input model
Multivariate G13BJF
time
series, state set and forecasts from fully specified ..
Univariate G13CBF
time
series, smoothed sample spectrum using spectral ...
Multivariate G13CDF
time
series, smoothed sample cross spectrum using spectral .
Return date and X05AAF
time
as an array of integers
Convert array of integers representing date and X05ABF
time
to character string
Compare two character strings representing date and X05ACF
time
Return the CPU X05BAF
time
Multivariate time series, preliminary estimation of G13BDF
transfer
function model
Single 1-D real discrete Fourier C06EAF
transform
, no extra workspace
Single 1-D Hermitian discrete Fourier C06EBF
transform
, no extra workspace
Single 1-D complex discrete Fourier C06ECF
transform
, no extra workspace
Multiple 1-D real discrete Fourier C06FPF
transforms
Multiple 1-D Hermitian discrete Fourier C06FQF
transforms
Multiple 1-D complex discrete Fourier C06FRF
transforms
2-D complex discrete Fourier C06FUF
transform
transform)
trapezium
frequency (Daniell) window
trapezium
frequency (Daniell) window
Matrix-vector product, real F06PFF
triangular
matrix (DTRMV)
Matrix-vector product, real F06PGF
triangular
band matrix (DTBMV)
Matrix-vector product, real F06PHF
triangular
packed matrix (DTPMV)
System of equations, real F06PJF
triangular
matrix (DTRSV)
System of equations, real F06PKF
triangular
band matrix (DTBSV)
System of equations, real F06PLF
triangular
packed matrix (DTPSV)
Matrix-vector product, complex F06SFF
triangular
matrix (ZTRMV)
Matrix-vector product, complex F06SGF
triangular
band matrix (ZTBMV)
Matrix-vector product, complex F06SHF
triangular
packed matrix (ZTPMV)
System of equations, complex F06SJF
triangular
matrix (ZTRSV)
System of equations, complex F06SKF
triangular
band matrix (ZTBSV)
System of equations, complex F06SLF
triangular
packed matrix (ZTPSV)
Matrix-matrix product, one real F06YFF
triangular
matrix, one real rectangular matrix (DTRMM)
triangular
coefficient matrix (DTRSM)
Matrix-matrix product, one complex F06ZFF
triangular
matrix, one complex rectangular matrix (ZTRMM)
triangular
coefficient matrix (ZTRSM)
Solution of real symmetric positive-definite F04FAF
tridiagonal
simultaneous linear equations, one right-hand side
Two-way G01AFF
2
contingency table analysis, with (chi) ...
Sign test on G08AAF
two
paired samples
Median test on G08ACF
two
samples of unequal size
Friedman G08AEF
two-way
analysis of variance on k matched samples
Performs the Mann-Whitney U test on G08AHF
two
independent samples
Compare X05ACF
two
character strings representing date and time
Dot product of two complex vectors, F06GAF
unconjugated
(ZDOTU)
Rank-1 update, complex rectangular matrix, F06SMF
unconjugated
vector (ZGERU)
Unconstrained E04DGF
minimum, pre-conditioned conjugate gradient ...
Unconstrained E04FDF
minimum of a sum of squares, combined ...
Unconstrained E04GCF
minimum of a sum of squares, combined ...
Switch for taking precautions to avoid X02DAF
underflow
Pseudo-random real numbers, G05CAF
uniform
distribution over (0,1)
Pseudo-random integer from G05DYF
uniform
distribution
Generates a vector of random numbers from a G05FAF
uniform
distribution
Operations with F01RDF
unitary
H
matrices, compute QB or Q B after ...
Operations with F01REF
unitary
matrices, form columns of Q after factorization by ...
Univariate G13AAF
time series, seasonal and non-seasonal differencing
Univariate G13ABF
time series, sample autocorrelation function
Univariate G13ACF
time series, partial autocorrelations from ...
Univariate G13ADF
time series, preliminary estimation, seasonal ...
Univariate G13AFF
time series, estimation, seasonal ARIMA model
Univariate G13AGF
time series, update state set for forecasting
Univariate G13AHF
time series, forecasting from state set
Univariate G13AJF
time series, state set and forecasts, from fully ...
Univariate G13ASF
time series, diagnostic checking of residuals, ...
Univariate G13CBF
time series, smoothed sample spectrum using ...
Rank-1 F06PMF
update
, real rectangular matrix (DGER)
Rank-1 F06PPF
update
, real symmetric matrix (DSYR)
Rank-1 F06PQF
update
, real symmetric packed matrix (DSPR)
Rank-2 F06PRF
update
, real symmetric matrix (DSYR2)
Rank-2 F06PSF
update
, real symmetric packed matrix (DSPR2)
Rank-1 F06SMF
update
, complex rectangular matrix, unconjugated vector
(ZGERU)
Rank-1 F06SNF
update
, complex rectangular matrix, conjugated vector (ZGERC)
Rank-1 F06SPF
update
, complex Hermitian matrix (ZHER)
Rank-1 F06SQF
update
, complex Hermitian packed matrix (ZHPR)
Rank-2 F06SRF
update
, complex Hermitian matrix (ZHER2)
Rank-2 F06SSF
update
, complex Hermitian packed matrix (ZHPR2)
Rank-k F06YPF
update
of a real symmetric matrix (DSYRK)
Rank-2k F06YRF
update
of a real symmetric matrix (DSYR2K)
Rank-k F06ZPF
update
of a complex Hermitian matrix (ZHERK)
Rank-2k F06ZRF
update
of a complex Hermitian matrix (ZHER2K)
Rank-k F06ZUF
update
of a complex symmetric matrix (ZSYRK)
Rank-2k F06ZWF
update
of a complex symmetric matrix (ZHER2K)
Univariate time series, G13AGF
update
state set for forecasting
Computes G01EEF
upper
and lower tail and probability density function ...
Input/output X04
utilities
Mean, G01AAF
variance
, skewness, kurtosis etc, one variable, from raw data
Mean, G01ADF
variance
, skewness, kurtosis etc, one variable, from ...
Friedman two-way analysis of G08AEF
variance
on k matched samples
Kruskal-Wallis one-way analysis of G08AFF
variance
on k samples of unequal size
VARMA
model
Circular convolution or correlation of two real C06EKF
vectors
, no extra workspace
Evaluation of a fitted bicubic spline at a E02DEF
vector
of points
Dot product of two real F06EAF
vectors
(DDOT)
Add scalar times real F06ECF
vector
to real vector (DAXPY)
Add scalar times real vector to real F06ECF
vector
(DAXPY)
Multiply real F06EDF
vector
by scalar (DSCAL)
Copy real F06EFF
vector
(DCOPY)
Swap two real F06EGF
vectors
(DSWAP)
Compute Euclidean norm of real F06EJF
vector
(DNRM2)
Sum the absolute values of real F06EKF
vector
elements (DASUM)
Dot product of two complex F06GAF
vectors
, unconjugated (ZDOTU)
Dot product of two complex F06GBF
vectors
, conjugated (ZDOTC)
Add scalar times complex F06GCF
vector
to complex vector (ZAXPY)
Add scalar times complex vector to complex F06GCF
vector
(ZAXPY)
Multiply complex F06GDF
vector
by complex scalar (ZSCAL)
Copy complex F06GFF
vector
(ZCOPY)
Swap two complex F06GGF
vectors
(ZSWAP)
Multiply complex F06JDF
vector
by real scalar (ZDSCAL)
Compute Euclidean norm of complex F06JJF
vector
(DZNRM2)
Sum the absolute values of complex F06JKF
vector
elements (DZASUM)
Index, real F06JLF
vector
element with largest absolute value (IDAMAX)
Index, complex F06JMF
vector
element with largest absolute value (IZAMAX)
Matrix- F06PAF
vector
product, real rectangular matrix (DGEMV)
Matrix- F06PBF
vector
product, real rectangular band matrix (DGBMV)
Matrix- F06PCF
vector
product, real symmetric matrix (DSYMV)
Matrix- F06PDF
vector
product, real symmetric band matrix (DSBMV)
Matrix- F06PEF
vector
product, real symmetric packed matrix (DSPMV)
Matrix- F06PFF
vector
product, real triangular matrix (DTRMV)
Matrix- F06PGF
vector
product, real triangular band matrix (DTBMV)
Matrix- F06PHF
vector
product, real triangular packed matrix (DTPMV)
Matrix- F06SAF
vector
product, complex rectangular matrix (ZGEMV)
Matrix- F06SBF
vector
product, complex rectangular band matrix (ZGBMV)
Matrix- F06SCF
vector
product, complex Hermitian matrix (ZHEMV)
Matrix- F06SDF
vector
product, complex Hermitian band matrix (ZHBMV)
Matrix- F06SEF
vector
product, complex Hermitian packed matrix (ZHPMV)
Matrix- F06SFF
vector
product, complex triangular matrix (ZTRMV)
Matrix- F06SGF
vector
product, complex triangular band matrix (ZTBMV)
Matrix- F06SHF
vector
product, complex triangular packed matrix (ZTPMV)
vector
(ZGERU)
Rank-1 update, complex rectangular matrix, conjugated F06SNF
vector
(ZGERC)
Set up reference G05EAF
vector
for multivariate Normal distribution
Set up reference G05ECF
vector
for generating pseudo-random integers, Poisson ...
Set up reference G05EDF
vector
for generating pseudo-random integers, binomial ...
Pseudo-random permutation of an integer G05EHF
vector
Pseudo-random sample from an integer G05EJF
vector
Set up reference G05EXF
vector
from supplied cumulative distribution function or ...
Pseudo-random integer from reference G05EYF
vector
Pseudo-random multivariate Normal G05EZF
vector
from reference vector
vector
Generates a G05FAF
vector
of random numbers from a uniform distribution
Generates a G05FBF
vector
of random numbers from an (negative) exponential ...
Generates a G05FDF
vector
of random numbers from a Normal distribution
Generates a G05FEF
vector
of pseudo-random numbers from a beta distribution
Generates a G05FFF
vector
of pseudo-random numbers from a gamma distribution
Sort a M01CAF
vector
, real numbers
Rank a M01DAF
vector
, real numbers
Rearrange a M01EAF
vector
according to given ranks, real numbers
Kruskal- G08AFF
Wallis
one-way analysis of variance on k samples of unequal ..
Pseudo-random real numbers, G05DPF
Weibull
distribution
1-D quadrature, adaptive, finite interval, D01ANF
weight
function cos((omega)x) or sin((omega)x)
1-D quadrature, adaptive, finite interval, D01APF
weight
function with end-point singularities of ...
1-D quadrature, adaptive, finite interval, D01AQF
weight
function 1/(x-c), Cauchy principal value ...
1-D quadrature, adaptive, semi-infinite interval, D01ASF
weight
function cos((omega)x) or sin((omega)x)
Pre-computed D01BBF
weights
and abscissae for Gaussian quadrature rules, ...
Computes (optionally G02BXF
weighted)
correlation and covariance matrices
Multivariate time series, filtering (pre- G13BAF
whitening)
by an ARIMA model
Performs the Mann- G08AHF
Whitney
U test on two independent samples
Computes the exact probabilities for the Mann- G08AJF
Whitney
U statistic, no ties in pooled sample
Computes the exact probabilities for the Mann- G08AKF
Whitney
U statistic, ties in pooled sample
Performs the G08AGF
Wilcoxon
one-sample (matched pairs) signed rank test
window
window
Two-way contingency table analysis, with G01AFF
2
(chi)
/Fisher's exact test
Computes probabilities for G01ECF
2
(chi)
distribution
Computes deviates for the G01FCF
2
(chi)
distribution
Performs the G08CGF
2
(chi)
goodness of fit test, for standard continuous ...
All C02AFF
zeros
of complex polynomial, modified Laguerre method
All C02AGF
zeros
of real polynomial, modified Laguerre method
Zero C05ADF
of continuous function in given interval, Bus and
Dekker ...
zero
(simple driver)
zero
, intermediate output (simple driver)
zero
, intermediate output (simple driver)
\end{verbatim}
\endscroll
\end{page}
\begin{page}{manpageXXconvert}{NAG On-line Documentation: convert}
\beginscroll
\begin{verbatim}
CONVERSION(3NAG) Foundation Library (12/10/92) CONVERSION(3NAG)
Introduction Converting from the Workstation Library
Converting from the Workstation Library
The NAG Foundation Library is a successor product to an earlier,
smaller subset of the full NAG Fortran Library which was called
the NAG Workstation Library. The Foundation Library has been
designed to be upwards compatible, in terms of functionality,
with the Workstation Library. However some routines that were
present in the Workstation Library have been replaced by more up-
to-date routines from the NAG Fortran Library, which provide
improved algorithms or software design.
The list below gives the names of those routines which were
available in the Workstation Library, but are not included in the
Foundation Library. For each such routine, it also gives the name
of the routine in the Foundation Library which best covers the
same functionality.
Workstation Foundation
Library Library
C02AEF C02AGF
D02CBF D02CJF
D02CHF D02CJF
D02EBF D02EJF
D02EHF D02EJF
D02HAF D02GAF
D02HBF D02RAF
D02SAF D02RAF
E02DBF E02DEF
E04VDF E04UCF
E04ZCF E04UCF (see Note 1)
F01BTF F07ADF
F01BXF F07FDF
F02WAF F02WEF
F04AYF F07AEF
F04AZF F07FEF
F04YAF G02DAF
G01ABF G02BXF (with M = 2)
G01BAF G01EBF
G01BBF G01EDF
G01BCF G01ECF
G01BDF G01EEF
G01CAF G01FBF
G01CBF G01FDF
G01CCF G01FCF
G01CDF G01FEF
G01CEF G01FAF
G02BAF G02BXF
G02BGF G02BXF
G02CEF G02DAF (see Note 2)
G02CGF G02DAF
G02CJF G02DAF
G05DBF G05FBF
G05DCF G05CAF (see Note 3)
G05DEF G05FFF
G05DHF G05FFF (see Note 4)
G05EGF G05HDF
G05EWF G05HDF
G08ABF G08AGF
G08ADF G08AHF
M01AKF M01DAF
M01APF M01CAF
S15ABF G01EAF
S15ACF G01EAF
X02AAF X02AJF
X02ACF X02ALF
Notes:
1. E04ZCF checks user-supplied routines for evaluating the
first derivatives of the objective function and constraint
functions supplied to E04VDF. This functionality is now
provided by E04UCF, using the optional parameters Verify
Objective Gradients and Verify Constraint Gradients.
2. G02CEF selects variables to be included in a linear
regression performed by G02CGF. This functionality is now
provided by the parameter ISX of G02DAF.
3. A call to G05DCF can be replaced by a simple transformation
of the result of a call to G05CAF. The statement
X = G05DCF(A,B)
can be replaced by the statements
X = G05CAF(X)
X = A + B*LOG(X/(1.0D0-X))
2
4. G05DHF generates random numbers from a (chi) distribution
with N degrees of freedom. This can be achieved by calling
G05FFF with the values DBLE(N)/2.0D0 and 2.0D0 for the
parameters A and B respectively.
\end{verbatim}
\endscroll
\end{page}
|