aboutsummaryrefslogtreecommitdiff
path: root/src/boot/ast.boot
blob: 190fc9260c92104b7b838f91e0257391864fe34d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
-- Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd.
-- All rights reserved.
-- Copyright (C) 2007-2011, Gabriel Dos Reis.
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:
--
--     - Redistributions of source code must retain the above copyright
--       notice, this list of conditions and the following disclaimer.
--
--     - Redistributions in binary form must reproduce the above copyright
--       notice, this list of conditions and the following disclaimer in
--       the documentation and/or other materials provided with the
--       distribution.
--
--     - Neither the name of The Numerical Algorithms Group Ltd. nor the
--       names of its contributors may be used to endorse or promote products
--       derived from this software without specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--

--
-- Abstract:
--   This file defines the AST data structure and helper functions
--   for representing Boot programs.
--

import includer
namespace BOOTTRAN
module ast

++ True means that Boot functions should be translated to use
++ hash tables to remember values.  By default, functions are
++ translated with the obvious semantics, e.g. no caching.
$bfClamming := false

++ List of identifiers defined as constants in the current
++ translation unit.
$constantIdentifiers := nil

++ When non-nil holds the scope nominated  in the most recent
++ namespace definition.
$activeNamespace := nil

structure %Ast ==
  %Command(%String)                     -- includer command
  %Lisp(%String)                        -- )lisp command
  %Module(%Symbol,%List,%List)          -- module declaration
  %Namespace(%Symbol)                   -- namespace AxiomCore
  %Import(%Ast)                         -- import module; import namespace foo
  %ImportSignature(%Symbol,%Signature)  -- import function declaration
  %TypeAlias(%Head, %List)              -- type alias definition
  %Signature(%Symbol,%Mapping)          -- op: S -> T
  %Mapping(%Ast, %List)                 -- (S1, S2) -> T
  %Forall(%List,%Ast)                   -- forall a . a -> a
  %SuffixDot(%Ast)                      -- x . 
  %Quote(%Ast)                          -- 'x
  %EqualPattern(%Ast)                   -- =x        -- patterns
  %Colon(%Symbol)                       -- :x
  %QualifiedName(%Symbol,%Symbol)       -- m::x
  %DefaultValue(%Symbol,%Ast)           -- opt. value for function param.
  %Bracket(%Ast)                        -- [x, y]
  %UnboundedSegment(%Ast)               -- 3..
  %BoundedSgement(%Ast,%Ast)            -- 2..4
  %Tuple(%List)                         -- a, b, c, d
  %ColonAppend(%Ast,%Ast)               -- [:y] or [x, :y]
  %Pretend(%Ast,%Ast)                   -- e : t     -- hard coercion
  %Is(%Ast,%Ast)                        -- e is p    -- patterns
  %Isnt(%Ast,%Ast)                      -- e isnt p  -- patterns
  %Reduce(%Ast,%Ast)                    -- +/[...]
  %PrefixExpr(%Symbol,%Ast)             -- #v
  %Call(%Ast,%Sequence)                 -- f(x, y , z)
  %InfixExpr(%Symbol,%Ast,%Ast)         -- x + y
  %ConstantDefinition(%Symbol,%Ast)     -- x == y
  %Definition(%Symbol,%Ast,%Ast)        -- f x == y
  %Macro(%Symbol,%List,%Ast)            -- m x ==> y
  %Lambda(%List,%Ast)                   -- x +-> x**2
  %SuchThat(%Ast)                       -- | p
  %Assignment(%Ast,%Ast)                -- x := y
  %While(%Ast)                          -- while p           -- iterator
  %Until(%Ast)                          -- until p           -- iterator
  %For(%Ast,%Ast,%Ast)                  -- for x in e by k   -- iterator
  %Implies(%Ast,%Ast)                   -- p => x
  %Iterators(%List)                     -- list of iterators
  %Cross(%List)                         -- iterator cross product
  %Repeat(%Sequence,%Ast)               -- while p repeat s
  %Pile(%Sequence)                      -- pile of expression sequence
  %Append(%Sequence)                    -- concatenate lists
  %Case(%Ast,%Sequence)                 -- case x of ...
  %Return(%Ast)                         -- return x
  %Leave(%Ast)                          -- leave x
  %Throw(%Ast)                          -- throw OutOfRange 3
  %Catch(%Signature,%Ast)               -- catch(x: OutOfRange) => print x
  %Finally(%Ast)                        -- finally closeStream f
  %Try(%Ast,%Sequence)                  -- try x / y catch DivisionByZero
  %Where(%Ast,%Sequence)                -- e where f x == y
  %Structure(%Ast,%Sequence)            -- structure Foo == ...

-- TRUE if we are currently building the syntax tree for an 'is' 
-- expression.
$inDefIS := false


++ returns a `quote' ast for x.
quote x ==
  ["QUOTE",x]

--%

bfGenSymbol: () -> %Symbol 
bfGenSymbol()==
  $GenVarCounter := $GenVarCounter+1
  makeSymbol strconc('"bfVar#",toString $GenVarCounter)

bfLetVar: () -> %Symbol
bfLetVar() ==
  $letGenVarCounter := $letGenVarCounter + 1
  makeSymbol strconc('"LETTMP#",toString $letGenVarCounter)

bfIsVar: () -> %Symbol
bfIsVar() ==
  $isGenVarCounter := $isGenVarCounter + 1
  makeSymbol strconc('"ISTMP#",toString $isGenVarCounter)

bfColon: %Thing -> %Form
bfColon x== 
  ["COLON",x]

bfColonColon: (%Symbol,%Symbol) -> %Symbol
bfColonColon(package, name) == 
  %hasFeature KEYWORD::CLISP and package in '(EXT FFI) =>
    FIND_-SYMBOL(symbolName name,package)
  makeSymbol(symbolName name, package)

bfSymbol: %Thing -> %Thing 
bfSymbol x==
  string? x=> x
  ['QUOTE,x]

 
bfDot: () -> %Symbol
bfDot() == 
  "DOT"
 
bfSuffixDot: %Form -> %Form
bfSuffixDot x ==
  [x,"DOT"]

bfEqual: %Form -> %Form
bfEqual(name) == 
  ["EQUAL",name]

bfBracket: %Thing -> %Thing 
bfBracket(part) == 
  part
 
bfPile: %List %Form -> %List %Form
bfPile(part) == 
  part
 
bfDo x ==
  x

bfAtScope(s,x) ==
  ["LET",[["*PACKAGE*",s]],x]

bfAppend: %List %List %Form -> %List %Form
bfAppend ls ==
  ls isnt [l,:ls] => nil
  r := copyList l
  p := r
  repeat
    ls isnt [l,:ls] => return r
    l = nil => nil
    lastNode(p).rest := copyList l
    p := rest p
 
bfColonAppend: (%List %Form,%Form) -> %Form
bfColonAppend(x,y) ==
  x = nil => 
    y is ["BVQUOTE",:a] => ["&REST",["QUOTE",:a]]
    ["&REST",y]
  [first x,:bfColonAppend(rest x,y)]

bfBeginsDollar: %Thing -> %Boolean 
bfBeginsDollar x ==  
  stringChar(symbolName x,0) = char "$"
 
compFluid id == 
  ["FLUID",id]
 
compFluidize x==
  x = nil => nil
  symbol? x and bfBeginsDollar x => compFluid x
  atomic? x => x
  [compFluidize(first x),:compFluidize(rest x)]
 
bfPlace x ==
  ["%Place",:x]

bfTuple x == 
  ["TUPLE",:x]
 
bfTupleP x ==
  x is ["TUPLE",:.]

++ If `bf' is a tuple return its elements; otherwise `bf'.
bfUntuple bf ==
  bfTupleP bf => rest bf
  bf
 
bfTupleIf x==
  bfTupleP x => x
  bfTuple x
 
bfTupleConstruct b ==
  a :=
    bfTupleP b => rest b
    [b]
  or/[x is ["COLON",.] for x in a] => bfMakeCons a
  ["LIST",:a]
 
bfConstruct b ==
  a :=
    bfTupleP b => rest b
    [b]
  bfMakeCons a
 
bfMakeCons l ==
  l = nil => nil
  l is [["COLON",a],:l1] =>
    l1 => ['append,a,bfMakeCons l1]
    a
  ['CONS,first l,bfMakeCons rest l]
 
bfFor(bflhs,U,step) ==
  U is ["tails",:.] => bfForTree('ON, bflhs, second U)
  U is ["SEGMENT",:.] => bfSTEP(bflhs,second U,step,third U)
  bfForTree('IN, bflhs, U)
 
bfForTree(OP,lhs,whole)==
  whole :=
    bfTupleP whole => bfMakeCons rest whole
    whole
  atom lhs => bfINON [OP,lhs,whole]
  lhs :=
    bfTupleP lhs => second lhs
    lhs
  lhs is ["L%T",:.] =>
    G := second lhs
    [:bfINON [OP,G,whole],:bfSuchthat bfIS(G,third lhs)]
  G := bfGenSymbol()
  [:bfINON [OP,G,whole],:bfSuchthat bfIS(G,lhs)]
 
 
bfSTEP(id,fst,step,lst)==
  initvar := [id]
  initval := [fst]
  inc :=
    atom step => step
    g1 := bfGenSymbol()
    initvar := [g1,:initvar]
    initval := [step,:initval]
    g1
  final :=
    atom lst => lst
    g2 := bfGenSymbol()
    initvar := [g2,:initvar]
    initval := [lst,:initval]
    g2
  ex :=
     lst = nil => []
     integer? inc =>
       pred :=
	 inc < 0 => "<"
	 ">"
       [[pred,id,final]]
     [['COND,[['MINUSP,inc],
	   ["<",id,final]],['T,[">",id,final]]]]
  suc := [['SETQ,id,["+",id,inc]]]
  [[initvar,initval,suc,[],ex,[]]]
 
 
bfINON x==
  [op,id,whole] := x
  op is "ON" => bfON(id,whole)
  bfIN(id,whole)
 
bfIN(x,E)==
  g := bfGenSymbol()
  vars := [g]
  inits := [E]
  exitCond := ['ATOM,g]
  if x isnt "DOT" then
    vars := [:vars,x]
    inits := [:inits,nil]
    exitCond := ['OR,exitCond,['PROGN,['SETQ,x,['CAR,g]] ,'NIL]]
  [[vars,inits,[['SETQ,g,['CDR, g]]],[],[exitCond],[]]]
 
bfON(x,E)==
  if x is "DOT" then
    x := bfGenSymbol()
  -- allow a list variable to iterate over its own tails.
  var := init := nil
  if not symbol? E or not symbolEq?(x,E) then
    var := [x]
    init := [E]
  [[var,init,[['SETQ,x,['CDR, x]]],[],[['ATOM,x]],[]]]
 
bfSuchthat p ==
  [[[],[],[],[p],[],[]]]
 
bfWhile p ==
  [[[],[],[],[],[bfNOT p],[]]]
 
bfUntil p==
     g:=bfGenSymbol()
     [[[g],[nil],[['SETQ,g,p]],[],[g],[]]]
 
bfIterators x ==
  ["ITERATORS",:x]
 
bfCross x ==
  ["CROSS",:x]
 
bfLp(iters,body)==
  iters is ["ITERATORS",:.] => bfLp1(rest iters,body)
  bfLpCross(rest iters,body)
 
bfLpCross(iters,body)==
  rest iters = nil => bfLp(first iters,body)
  bfLp(first iters,bfLpCross(rest iters,body))
 
bfSep(iters)==
  iters = nil => [[],[],[],[],[],[]]
  f := first iters
  r := bfSep rest iters
  [append(i,j) for i in f for j in r]
 
bfReduce(op,y)==
  a :=
    op is ["QUOTE",:.] => second op
    op
  op := bfReName a
  init := a has SHOETHETA or op has SHOETHETA
  g := bfGenSymbol()
  g1 := bfGenSymbol()
  body := ['SETQ,g,[op,g,g1]]
  init = nil =>
    g2 := bfGenSymbol()
    init := ['CAR,g2]
    ny := ['CDR,g2]
    it := ["ITERATORS",:[[[[g],[init],[],[],[],[g]]],bfIN(g1,ny)]]
    bfMKPROGN [['L%T,g2,y],bfLp(it,body)]
  init := first init
  it := ["ITERATORS",:[[[[g],[init],[],[],[],[g]]],bfIN(g1,y)]]
  bfLp(it,body)
 
bfReduceCollect(op,y)==
  y is ["COLLECT",:.] => 
    body := second y
    itl := third y
    a :=
      op is ["QUOTE",:.] => second op
      op
    a is "append!" => bfDoCollect(body,itl,'lastNode,'skipNil)
    a is "append" => bfDoCollect(['copyList,body],itl,'lastNode,'skipNil)
    op := bfReName a
    init := a has SHOETHETA or op has SHOETHETA
    bfOpReduce(op,init,body,itl)
  seq :=
    y = nil => bfTuple nil
    second y
  bfReduce(op,bfTupleConstruct seq)
 
-- delayed collect
 
bfDCollect(y,itl) == 
  ["COLLECT",y,itl]
 
bfDTuple x == 
  ["DTUPLE",x]
 
bfCollect(y,itl) ==
  y is ["COLON",a] =>
    a is ['CONS,:.] or a is ['LIST,:.] =>
      bfDoCollect(a,itl,'lastNode,'skipNil)
    bfDoCollect(['copyList,a],itl,'lastNode,'skipNil)
  y is ["TUPLE",:.] =>
    bfDoCollect(bfConstruct y,itl,'lastNode,'skipNil)
  bfDoCollect(['CONS,y,'NIL],itl,'CDR,nil)
 
bfMakeCollectInsn(expr,prev,head,adv) ==
  firstTime := bfMKPROGN
    [['SETQ,head,expr],['SETQ,prev,(adv is 'CDR => head; [adv,head])]]
  otherTime := bfMKPROGN [['RPLACD,prev,expr],['SETQ,prev,[adv,prev]]]
  bfIf(['NULL,head],firstTime,otherTime)

bfDoCollect(expr,itl,adv,k) ==
  head := bfGenSymbol()            -- pointer to the result
  prev := bfGenSymbol()            -- pointer to the previous cell
  body :=
    k is 'skipNil =>
      x := bfGenSymbol()
      ['LET,[[x,expr]],
         bfIf(['NULL,x],'NIL,bfMakeCollectInsn(x,prev,head,adv))]
    bfMakeCollectInsn(expr,prev,head,adv)
  extrait := [[[head,prev],['NIL,'NIL],nil,nil,nil,[head]]]
  bfLp2(extrait,itl,body)

bfLp1(iters,body)==
  [vars,inits,sucs,filters,exits,value] := bfSep bfAppend iters
  nbody :=
    filters = nil => body
    bfAND [:filters,body]
  value :=
    value = nil => "NIL"
    first value
  exits :=
    exits = nil => nbody
    bfIf(bfOR exits,["RETURN",value],nbody)
  loop := ["LOOP",exits,:sucs]
  if vars then loop := 
    ["LET",[[v, i] for v in vars for i in inits], loop]
  loop
 
bfLp2(extrait,itl,body)==
  itl is ["ITERATORS",:.] => bfLp1([extrait,:rest itl],body)
  iters := rest itl
  bfLpCross([["ITERATORS",extrait,:CDAR iters],:rest iters],body)
 
bfOpReduce(op,init,y,itl)==
  g := bfGenSymbol()
  body:=
    op is "AND" =>
      bfMKPROGN [["SETQ",g,y], ['COND, [['NOT,g],['RETURN,'NIL]]]]
    op is "OR" => bfMKPROGN [["SETQ",g,y], ['COND, [g,['RETURN,g]]]]
    ['SETQ,g,[op,g,y]]
  init = nil =>
    g1 := bfGenSymbol()
    init := ['CAR,g1]
    y := ['CDR,g1]          -- ??? bogus self-assignment/initialization
    extrait := [[[g],[init],[],[],[],[g]]]
    bfMKPROGN [['L%T,g1,y],bfLp2(extrait,itl,body)]
  init := first init
  extrait := [[[g],[init],[],[],[],[g]]]
  bfLp2(extrait,itl,body)
 
bfLoop1 body == 
  bfLp (bfIterators nil,body)
 
bfSegment1(lo) ==
  ["SEGMENT",lo,nil]
 
bfSegment2(lo,hi) ==
  ["SEGMENT",lo,hi]
 
bfForInBy(variable,collection,step)==
  bfFor(variable,collection,step)
 
bfForin(lhs,U)==
  bfFor(lhs,U,1)
 
bfLocal(a,b)==
  b is "FLUID" =>  compFluid a
  b is "local" =>  compFluid a
  a
 
bfTake(n,x)==
  x = nil => x
  n=0 => nil
  [first x,:bfTake(n-1,rest x)]
 
bfDrop(n,x)==
  x = nil or n = 0 => x
  bfDrop(n-1,rest x)
 
bfReturnNoName a ==
  ["RETURN",a]

bfLeave x ==
  ["%Leave",x]
 
bfSUBLIS(p,e)==
  atom e => bfSUBLIS1(p,e)
  e.op is 'QUOTE => e
  [bfSUBLIS(p,first e),:bfSUBLIS(p,rest e)]
 
+++ Returns e/p, where e is an atom.  We assume that the
+++ DEFs form a system admitting a fix point; otherwise we may
+++ loop forever.  That can happen only if nullary goats
+++ are recursive -- which they are not supposed to be.
+++ We don't enforce that restriction though.
bfSUBLIS1(p,e)==
   p = nil => e
   f := first p
   sameObject?(first f,e) => bfSUBLIS(p, rest f)
   bfSUBLIS1(rest p,e)
 
defSheepAndGoats(x)==
  case x of 
    %Definition(op,args,body) =>
      argl :=
        bfTupleP args => rest args
	[args]
      argl = nil =>
	opassoc := [[op,:body]]
	[opassoc,[],[]]
      op1 := makeSymbol strconc(symbolName $op,'",",symbolName op)
      opassoc := [[op,:op1]]
      defstack := [[op1,args,body]]
      [opassoc,defstack,[]]
    %Pile defs => defSheepAndGoatsList defs
    otherwise => [[],[],[x]]
 
defSheepAndGoatsList(x)==
  x = nil => [[],[],[]]
  [opassoc,defs,nondefs]    := defSheepAndGoats first x
  [opassoc1,defs1,nondefs1] := defSheepAndGoatsList rest x
  [append(opassoc,opassoc1),append(defs,defs1), append(nondefs,nondefs1)]

--% LET
 
bfLetForm(lhs,rhs) ==   
  ['L%T,lhs,rhs]
 
bfLET1(lhs,rhs) ==
  symbol? lhs        => bfLetForm(lhs,rhs)
  lhs is ['FLUID,.] => bfLetForm(lhs,rhs)
  symbol? rhs and not bfCONTAINED(rhs,lhs) =>
    rhs1 := bfLET2(lhs,rhs)
    rhs1 is ["L%T",:.]   => bfMKPROGN [rhs1,rhs]
    rhs1 is ["PROGN",:.] => [:rhs1,:[rhs]]
    if symbol? first rhs1 then rhs1 := [rhs1,:nil]
    bfMKPROGN [:rhs1,rhs]
  rhs is ["L%T",:.] and symbol?(name := second rhs) =>
    -- handle things like [a] := x := foo
    l1 := bfLET1(name,third rhs)
    l2 := bfLET1(lhs,name)
    l2 is ["PROGN",:.] => bfMKPROGN [l1,:rest l2]
    if symbol? first l2 then l2 := [l2,:nil]
    bfMKPROGN [l1,:l2,name]
  g := bfLetVar()
  rhs1 := ['L%T,g,rhs]
  let1 := bfLET1(lhs,g)
  let1 is ["PROGN",:.] => bfMKPROGN [rhs1,:rest let1]
  if symbol? first let1 then let1 := [let1,:nil]
  bfMKPROGN [rhs1,:let1,g]
 
bfCONTAINED(x,y)==
  sameObject?(x,y) => true
  atom y=> false
  bfCONTAINED(x,first y) or bfCONTAINED(x,rest y)
 
bfLET2(lhs,rhs) ==
  lhs = nil => nil
  symbol? lhs => bfLetForm(lhs,rhs)
  lhs is ['FLUID,.] => bfLetForm(lhs,rhs)
  lhs is ['L%T,a,b] =>
    a := bfLET2(a,rhs)
    (b := bfLET2(b,rhs)) = nil => a
    atom b => [a,b]
    cons? first b => [a,:b]
    [a,b]
  lhs is ['CONS,var1,var2] =>
    var1 is "DOT" or var1 is ["QUOTE",:.] =>
      bfLET2(var2,addCARorCDR('CDR,rhs))
    l1 := bfLET2(var1,addCARorCDR('CAR,rhs))
    var2 = nil or var2 is "DOT" =>l1
    if cons? l1 and atom first l1 then l1 := [l1,:nil]
    symbol? var2 =>
      [:l1,bfLetForm(var2,addCARorCDR('CDR,rhs))]
    l2 := bfLET2(var2,addCARorCDR('CDR,rhs))
    if cons? l2 and atom first l2 then l2 := [l2,:nil]
    [:l1,:l2]
  lhs is ['append,var1,var2] =>
    patrev := bfISReverse(var2,var1)
    rev := ['reverse,rhs]
    g := bfLetVar()
    l2 := bfLET2(patrev,g)
    if cons? l2 and atom first l2 then
      l2 := [l2,:nil]
    var1 is "DOT" => [['L%T,g,rev],:l2]
    first lastNode l2 is ['L%T, =var1, val1] =>
      [['L%T,g,rev],:reverse rest reverse l2,
       bfLetForm(var1,['reverse!,val1])]
    [['L%T,g,rev],:l2,bfLetForm(var1,['reverse!,var1])]
  lhs is ["EQUAL",var1] => ['COND,[bfQ(var1,rhs),var1]]
  -- The original expression may be one that involves literals as 
  -- sub-patterns, e.g.
  --      ['SEQ, :l, ['exit, 1, x]] := item
  -- We continue the processing as if that expression had been written
  --      item is ['SEQ, :l, ['exit, 1, x]]
  -- and generate appropriate codes.
  --                  -- gdr/2007-04-02.
  isPred :=
    $inDefIS => bfIS1(rhs,lhs)
    bfIS(rhs,lhs)
  ['COND,[isPred,rhs]]
 
 
bfLET(lhs,rhs) ==
  $letGenVarCounter : local := 0
  bfLET1(lhs,rhs)
 
addCARorCDR(acc,expr) ==
  atom expr => [acc,expr]
  acc is 'CAR and expr is ["reverse",:.] =>
      ["CAR",["lastNode",:rest expr]]
  funs := '(CAR CDR CAAR CDAR CADR CDDR CAAAR CADAR CAADR CADDR
            CDAAR CDDAR CDADR CDDDR)
  p := bfPosition(first expr,funs)
  p = -1 => [acc,expr]
  funsA := '(CAAR CADR CAAAR CADAR CAADR CADDR CAAAAR CAADAR CAAADR
             CAADDR CADAAR CADDAR CADADR CADDDR)
  funsR := '(CDAR CDDR CDAAR CDDAR CDADR CDDDR CDAAAR CDADAR CDAADR
             CDADDR CDDAAR CDDDAR CDDADR CDDDDR)
  acc is 'CAR => [funsA.p,:rest expr]
  [funsR.p,:rest expr]
 
bfPosition(x,l) ==  bfPosn(x,l,0)
bfPosn(x,l,n) ==
  l = nil => -1
  x = first l => n
  bfPosn(x,rest l,n+1)
 
--% IS
 
bfISApplication(op,left,right)==
  op is "IS"      => bfIS(left,right)
  op is "ISNT"    => bfNOT bfIS(left,right)
  [op ,left,right]
 
bfIS(left,right)==
  $isGenVarCounter: local := 0
  $inDefIS: local :=true
  bfIS1(left,right)
 
bfISReverse(x,a) ==
  x is ['CONS,:.] =>
    third x = nil => ['CONS,second x, a]
    y := bfISReverse(third x, nil)
    y.rest.rest.first := ['CONS,second x,a]
    y
  bpSpecificErrorHere '"Error in bfISReverse"
  bpTrap()
 
bfIS1(lhs,rhs) ==
  rhs = nil => ['NULL,lhs]
  bfString? rhs => bfAND [['STRINGP,lhs],["STRING=",lhs,rhs]]
  bfChar? rhs or integer? rhs => ['EQL,lhs,rhs]
  atom rhs => ['PROGN,bfLetForm(rhs,lhs),'T]
  rhs is ['QUOTE,a] =>
    symbol? a => ['EQ,lhs,rhs]
    string? a => bfAND [['STRINGP,lhs],["STRING=",lhs,a]]
    ["EQUAL",lhs,rhs]
  rhs is ['L%T,c,d] =>
    l := bfLET(c,lhs)
    bfAND [bfIS1(lhs,d),bfMKPROGN [l,'T]]
  rhs is ["EQUAL",a] => bfQ(lhs,a)
  cons? lhs =>
    g := bfIsVar()
    bfMKPROGN [['L%T,g,lhs],bfIS1(g,rhs)]
  rhs is ['CONS,a,b] =>
    a is "DOT" =>
      b = nil => bfAND [['CONSP,lhs],['NULL,['CDR,lhs]]]
      bfAND [['CONSP,lhs],bfIS1(['CDR,lhs],b)]
    b = nil =>
      bfAND [['CONSP,lhs],['NULL,['CDR,lhs]],bfIS1(['CAR,lhs],a)]
    b is "DOT" => bfAND [['CONSP,lhs],bfIS1(['CAR,lhs],a)]
    a1 := bfIS1(['CAR,lhs],a)
    b1 := bfIS1(['CDR,lhs],b)
    a1 is ['PROGN,c,'T] and b1 is ['PROGN,:cls] =>
      bfAND [['CONSP,lhs],bfMKPROGN [c,:cls]]
    bfAND [['CONSP,lhs],a1,b1]
  rhs is ['append,a,b] =>
    patrev := bfISReverse(b,a)
    g := bfIsVar()
    rev := bfAND [['CONSP,lhs],['PROGN,['L%T,g,['reverse,lhs]],'T]]
    l2 := bfIS1(g,patrev)
    if cons? l2 and atom first l2 then l2 := [l2,:nil]
    a is "DOT" => bfAND [rev,:l2]
    bfAND [rev,:l2,['PROGN,bfLetForm(a,['reverse!,a]),'T]]
  bpSpecificErrorHere '"bad IS code is generated"
  bpTrap()


bfHas(expr,prop) ==
  symbol? prop => ["GET",expr,["QUOTE",prop]]
  bpSpecificErrorHere('"expected identifier as property name")
  
bfApplication(bfop, bfarg) ==
  bfTupleP bfarg => [bfop,:rest bfarg]
  [bfop,bfarg]
 
-- returns the meaning of x in the appropriate Boot dialect.
bfReName x==
  a := x has SHOERENAME => first a
  x

sequence?(x,pred) ==
  x is ["QUOTE",seq] and cons? seq and
    "and"/[apply(pred,y,nil) for y in seq]

idList? x ==
  x is ["LIST",:.] and "and"/[defQuoteId arg for arg in x.args]

charList? x ==
  x is ["LIST",:.] and "and"/[bfChar? arg for arg in x.args]

stringList? x ==
  x is ["LIST",:.] and "and"/[bfString? arg for arg in x.args]

++ Generate code for a membership test `x in seq' where `seq'
++ is a sequence (e.g. a list)
bfMember(var,seq) ==
  integer? var or sequence?(seq,function integer?) =>
    seq is ["QUOTE",[x]] => ["EQL",var,x]
    ["scalarMember?",var,seq]
  defQuoteId var or sequence?(seq,function symbol?) =>
    seq is ["QUOTE",[x]] => ["EQ",var,["QUOTE",x]]
    ["symbolMember?",var,seq]
  idList? seq =>
    seq.args is [.] => ["EQ",var,:seq.args]
    symbol? var and seq.args is [x,y] =>
      bfOR [["EQ",var,x],["EQ",var,y]]
    ["symbolMember?",var,seq]
  bfChar? var or sequence?(seq,function char?) =>
    seq is ["QUOTE",[x]] => ["CHAR=",var,x]
    ["charMember?",var,seq]
  charList? seq =>
    seq.args is [.] => ["CHAR=",var,:seq.args]
    symbol? var and seq.args is [x,y] =>
      bfOR [["CHAR=",var,x],["CHAR=",var,y]]
    ["charMember?",var,seq]
  bfString? var or sequence?(seq,function string?) =>
    seq is ["QUOTE",[x]] => ["STRING=",var,x]
    ["stringMember?",var,seq]
  stringList? seq =>
    seq.args is [.] => ["STRING=",var,:seq.args]
    symbol? var and seq.args is [x,y] =>
      bfOR [["STRING=",var,x],["STRING=",var,y]]
    ["stringMember?",var,seq]
  ["MEMBER",var,seq]
  
bfInfApplication(op,left,right)==
  op is "EQUAL" => bfQ(left,right)
  op is "/="    => bfNOT bfQ(left,right)
  op is ">"     => bfLessp(right,left)
  op is "<"     => bfLessp(left,right)
  op is "<="    => bfNOT bfLessp(right,left)
  op is ">="    => bfNOT bfLessp(left,right)
  op is "OR"    => bfOR [left,right]
  op is "AND"   => bfAND [left,right]
  op is "IN"    => bfMember(left,right)
  [op,left,right]
 
bfNOT x==
  x is ["NOT",a]=> a
  x is ["NULL",a]=> a
  ["NOT",x]
 
bfFlatten(op, x) ==
  x is [=op,:.] => rest x
  [x]
 
bfOR l  ==
  l = nil => false
  rest l = nil => first l
  ["OR",:[:bfFlatten("OR",c) for c in l]]
 
bfAND l ==
  l = nil => true
  rest l = nil => first l
  ["AND",:[:bfFlatten("AND",c) for c in l]]
 
 
defQuoteId x==  
  x is ["QUOTE",:.] and symbol? second x
 
bfChar? x ==
  char? x or cons? x and x.op in '(char CODE_-CHAR SCHAR)
 
bfSmintable x==
  integer? x or cons? x and
    x.op in '(SIZE LENGTH CHAR_-CODE MAXINDEX _+ _-)

bfString? x ==
  string? x
    or cons? x and first x in '(STRING SYMBOL_-NAME subString)

bfQ(l,r)==
  bfChar? l or bfChar? r => ["CHAR=",l,r]
  bfSmintable l or bfSmintable r => ["EQL",l,r]
  defQuoteId l or defQuoteId r => ["EQ",l,r]
  l = nil => ["NULL",r]
  r = nil => ["NULL",l]
  l = true or r = true => ["EQ",l,r]
  bfString? l or bfString? r => ["STRING=",l,r]
  l is "%nothing" or r is "%nothing" => ["EQ",l,r]
  ["EQUAL",l,r]
 
bfLessp(l,r)==
  l = 0 => ["PLUSP",r]
  r = 0 => ["MINUSP", l]
  bfChar? l or bfChar? r => ["CHAR<",l,r]
  bfString? l or bfString? r => ["STRING<",l,r]
  ["<",l,r]

bfLambda(vars,body) ==
  -- FIXME: Check that we have only names in vars.
  vars := 
    bfTupleP vars => rest vars
    [vars]
  ["LAMBDA",vars,body]
 
bfMDef (op,args,body) ==
  argl :=
    bfTupleP args => rest args
    [args]
  [gargl,sgargl,nargl,largl]:=bfGargl argl
  sb := [[i,:j] for i in nargl for j in sgargl]
  body := applySubst(sb,body)
  sb2 := [["CONS",["QUOTE",i],j] for i in sgargl for j in largl]
  body := ["applySubst",["LIST",:sb2],["QUOTE",body]]
  lamex:= ["MLAMBDA",gargl,body]
  def:= [op,lamex]
  [shoeComp def,:[:shoeComps bfDef1 d for d in $wheredefs]]
 
bfGargl argl==
  argl = nil => [[],[],[],[]]
  [a,b,c,d] := bfGargl rest argl
  first argl is "&REST" =>
    [[first argl,:b],b,c,
       [["CONS",["QUOTE","LIST"],first d],:rest d]]
  f := bfGenSymbol()
  [[f,:a],[f,:b],[first argl,:c],[f,:d]]
 
bfDef1 [op,args,body] ==
  argl :=
    bfTupleP args => rest args
    [args]
  [quotes,control,arglp,body]:=bfInsertLet (argl,body)
  quotes => shoeLAM(op,arglp,control,body)
  [[op,["LAMBDA",arglp,body]]]
 
shoeLAM (op,args,control,body)==
  margs :=bfGenSymbol()
  innerfunc:= makeSymbol strconc(symbolName op,'",LAM")
  [[innerfunc,["LAMBDA",args,body]],
     [op,["MLAMBDA",["&REST",margs],["CONS",["QUOTE", innerfunc],
                    ["WRAP",margs, ["QUOTE", control]]]]]]
 
bfDef(op,args,body) ==
 $bfClamming =>
   [.,op1,arg1,:body1] := shoeComp first bfDef1 [op,args,body]
   bfCompHash(op1,arg1,body1)
 bfTuple
  [:shoeComps bfDef1 d for d in  [[op,args,body],:$wheredefs]]
 
shoeComps  x==
  [shoeComp def for def in x]

shoeComp x==
  a := shoeCompTran second x
  a is ["LAMBDA",:.] => ["DEFUN",first x,second a,:CDDR a]
  ["DEFMACRO",first x,second a,:CDDR a]

++ Translate function parameter list to Lisp.
++ We are processing a function definition.  `p2' is the list of
++ parameters we have seen so far, and we are about to add a 
++ parameter `p1'.  Check that the new specification is coherent
++ with the previous one.  In particular, check that restrictions
++ on parameters with default values are satisfied.  Return the
++ new augmented parameter list.
bfParameterList(p1,p2) ==
  p2=nil and not atom p1 => p1
  p1 is ["&OPTIONAL",:.] =>
    p2 isnt ["&OPTIONAL",:.] => bpSpecificErrorHere '"default value required"
    [first p1,:rest p1,:rest p2]
  p2 is ["&OPTIONAL",:.] =>   [p1,first p2,:rest p2]
  [p1,:p2]
 
bfInsertLet(x,body)==
  x = nil => [false,nil,x,body]
  x is ["&REST",a] =>
    a is ["QUOTE",b] => [true,"QUOTE",["&REST",b],body]
    [false,nil,x,body]
  [b,norq,name1,body1] :=  bfInsertLet1 (first x,body)
  [b1,norq1,name2,body2] :=  bfInsertLet (rest x,body1)
  [b or b1,[norq,:norq1],bfParameterList(name1,name2),body2]
 
bfInsertLet1(y,body)==
  y is ["L%T",l,r] => [false,nil,l,bfMKPROGN [bfLET(r,l),body]]
  symbol? y => [false,nil,y,body]
  y is ["BVQUOTE",b] => [true,"QUOTE",b,body]
  g:=bfGenSymbol()
  atom y => [false,nil,g,body]
  case y of
    %DefaultValue(p,v) => [false,nil,["&OPTIONAL",[p,v]],body]
    otherwise => [false,nil,g,bfMKPROGN [bfLET(compFluidize y,g),body]]
 
shoeCompTran x==
  [lamtype,args,:body] := x
  $fluidVars: local := nil
  $locVars: local := nil
  $dollarVars: local :=nil
  shoeCompTran1 body
  $locVars := setDifference(setDifference($locVars,$fluidVars),shoeATOMs args)
  body :=
    lvars := append($fluidVars,$locVars)
    $fluidVars := UNION($fluidVars,$dollarVars)
    body' := body
    if $typings then
      body' := [["DECLARE",:$typings],:body']
    if $fluidVars then
      fvars := ["DECLARE",["SPECIAL",:$fluidVars]]
      body' := [fvars,:body']
    lvars or needsPROG body => shoePROG(lvars,body')
    body'
  fl := shoeFluids args
  body :=
    fl =>
      fvs:=["DECLARE",["SPECIAL",:fl]]
      [fvs,:body]
    body
  [lamtype,args,:body]

needsPROG body ==
  atom body => false
  [op,:args] := body
  op in '(RETURN RETURN_-FROM) => true
  op in '(LET PROG LOOP BLOCK DECLARE LAMBDA) => false
  or/[needsPROG t for t in body]

shoePROG(v,b)==
  b = nil => [["PROG", v]]
  [:blist,blast] := b
  [["PROG",v,:blist,["RETURN", blast]]]

shoeFluids x==
  x = nil => nil
  symbol? x and bfBeginsDollar x => [x]
  atom x => nil
  x is ["QUOTE",:.] => nil
  [:shoeFluids first x,:shoeFluids rest x]

shoeATOMs x ==
  x = nil => nil
  symbol? x => [x]
  atom x => nil
  [:shoeATOMs first x,:shoeATOMs rest x]

++ Return true if `x' is an identifier name that designates a
++ dynamic (e.g. Lisp special) variable.  
isDynamicVariable x ==
  symbol? x and bfBeginsDollar x =>
    symbolMember?(x,$constantIdentifiers) => false
    CONSTANTP x => false
    BOUNDP x or $activeNamespace = nil => true
    y := FIND_-SYMBOL(symbolName x,$activeNamespace) => not CONSTANTP y
    true
  false
 
shoeCompTran1 x ==
  atom x =>
    if isDynamicVariable x and not symbolMember?(x,$dollarVars) then
      $dollarVars := [x,:$dollarVars]
    x
  U := first x
  U is "QUOTE" => x
  x is ["CASE",y,:zs] =>
    second(x) := shoeCompTran1 y
    while zs ~= nil repeat
      second(first zs) := shoeCompTran1 second first zs
      zs := rest zs
    x
  x is ["L%T",l,r] =>
    x.op := "SETQ"
    third(x) := shoeCompTran1 r
    symbol? l =>
      bfBeginsDollar l =>
        if not symbolMember?(l,$dollarVars) then
          $dollarVars := [l,:$dollarVars]
        x
      if not symbolMember?(l,$locVars) then
        $locVars := [l,:$locVars]
      x
    l is ["FLUID",:.] =>
      if not symbolMember?(second l,$fluidVars) then
        $fluidVars := [second l,:$fluidVars]
      x.rest.first := second l
      x
  U is "%Leave" => (x.op := "RETURN"; x)
  U in '(PROG LAMBDA) =>
    newbindings := nil
    for y in second x repeat
      not symbolMember?(y,$locVars)=>
	$locVars := [y,:$locVars]
	newbindings := [y,:newbindings]
    rest(x).rest := shoeCompTran1 CDDR x
    $locVars := [y for y in $locVars | not symbolMember?(y,newbindings)]
    x
  -- literal vectors.
  x is ['vector,elts] =>
    x.op := 'VECTOR
    do
      elts is 'NIL => x.args := nil
      x.args := shoeCompTran1 elts.args  -- elts.op is LIST
    x
  x is ['%Namespace,n] =>
    n is "DOT" => "*PACKAGE*"
    ["FIND-PACKAGE",symbolName n]
  x.first := shoeCompTran1 first x
  x.rest := shoeCompTran1 rest x
  x
 
bfTagged(a,b)==
  $op = nil => %Signature(a,b)        -- surely a toplevel decl
  symbol? a =>
    b is "FLUID" =>  bfLET(compFluid a,nil)
    b is "local" =>  bfLET(compFluid a,nil)
    $typings := [["TYPE",b,a],:$typings]
    a
  ["THE",b,a]
 
bfAssign(l,r)==
  bfTupleP l => bfSetelt(second l,CDDR l ,r)
  l is ["%Place",:l'] => ["SETF",l',r]
  bfLET(l,r)
 
bfSetelt(e,l,r)==
  rest l = nil => defSETELT(e,first l,r)
  bfSetelt(bfElt(e,first l),rest l,r)
 
bfElt(expr,sel)==
  y := symbol? sel and sel has SHOESELFUNCTION
  y =>
    integer? y => ["ELT",expr,y]
    [y,expr]
  ["ELT",expr,sel]
 
defSETELT(var,sel,expr)==
  y := symbol? sel and sel has SHOESELFUNCTION
  y =>
    integer? y => ["SETF",["ELT",var,y],expr]
    y is "CAR" => ["RPLACA",var,expr]
    y is "CDR" => ["RPLACD",var,expr]
    ["SETF",[y,var],expr]
  ["SETF",["ELT",var,sel],expr]
 
bfIfThenOnly(a,b)==
  b1 :=
    b is ["PROGN",:.] => rest b
    [b]
  ["COND",[a,:b1]]
 
bfIf(a,b,c)==
  b1 :=
    b is ["PROGN",:.] => rest b
    [b]
  c is ["COND",:.] => ["COND",[a,:b1],:rest c]
  c1 :=
    c is ["PROGN",:.] => rest c
    [c]
  ["COND",[a,:b1],['T,:c1]]
 
bfExit(a,b)==  
  ["COND",[a,["IDENTITY",b]]]
 
bfMKPROGN l==
  a := [:bfFlattenSeq c for c in tails l]
  a = nil => nil
  rest a = nil => first a
  ["PROGN",:a]
 
bfFlattenSeq x ==
  x = nil => nil
  f := first x
  atom f =>
    rest x => nil
    [f]
  f is ["PROGN",:.] =>
    rest x => [i for i in rest f| not atom i]
    rest f
  [f]
 
++ The body of each branch of a COND form is an implicit PROGN.  
++ For readability purpose, we want to refrain from including
++ any explicit PROGN.
bfWashCONDBranchBody x ==
  x is ["PROGN",:y] => y
  [x]

bfAlternative(a,b) ==
  a is ["AND",:conds,["PROGN",stmt,='T]] =>
    [["AND",:conds], :bfWashCONDBranchBody bfMKPROGN [stmt,b]]
  [a,:bfWashCONDBranchBody b]

bfSequence l ==
  l = nil => nil
  transform := [bfAlternative(a,b) for x in l while
                  x is ["COND",[a,["IDENTITY",b]]]]
  no := #transform
  before := bfTake(no,l)
  aft := bfDrop(no,l)
  before = nil =>
    l is [f] =>
      f is ["PROGN",:.] => bfSequence rest f
      f
    bfMKPROGN [first l,bfSequence rest l]
  aft = nil => ["COND",:transform]
  ["COND",:transform,bfAlternative('T,bfSequence aft)]
 
bfWhere (context,expr)==
  [opassoc,defs,nondefs] := defSheepAndGoats context
  a:=[[first d,second d,bfSUBLIS(opassoc,third d)]
               for d in defs]
  $wheredefs:=append(a,$wheredefs)
  bfMKPROGN bfSUBLIS(opassoc,append!(nondefs,[expr]))
 
--shoeReadLispString(s,n)==
--    n>= # s => nil
--    [exp,ind]:=shoeReadLisp(s,n)
--    exp = nil => nil
--    [exp,:shoeReadLispString(s,ind)]
 
bfCompHash(op,argl,body) ==
  auxfn:= makeSymbol strconc(symbolName op,'";")
  computeFunction:= ["DEFUN",auxfn,argl,:body]
  bfTuple [computeFunction,:bfMain(auxfn,op)]
 
shoeCompileTimeEvaluation x ==
  ["EVAL-WHEN", [KEYWORD::COMPILE_-TOPLEVEL], x]

bfMain(auxfn,op)==
  g1 := bfGenSymbol()
  arg :=["&REST",g1]
  computeValue := ['APPLY,["FUNCTION",auxfn],g1]
  cacheName := makeSymbol strconc(symbolName op,'";AL")
  g2:= bfGenSymbol()
  getCode := ['GETHASH,g1,cacheName]
  secondPredPair := [['SETQ,g2,getCode],g2]
  putCode := ['SETF ,getCode,computeValue]
  thirdPredPair:= ['T,putCode]
  codeBody:= ['PROG,[g2],
               ['RETURN,['COND,secondPredPair,thirdPredPair]]]
  mainFunction:= ["DEFUN",op,arg,codeBody]
 
  cacheType:=     'hash_-table
  cacheResetCode:=   ['SETQ,cacheName,['MAKE_-HASHTABLE,
                        ["QUOTE","UEQUAL"]]]
  cacheCountCode:= ['hashCount,cacheName]
  cacheVector:=
      [op,cacheName,cacheType,cacheResetCode,cacheCountCode]
  defCode := ["DEFPARAMETER",cacheName,
                ['MAKE_-HASHTABLE,["QUOTE","UEQUAL"]]]
  [defCode,mainFunction,
    ["SETF",["GET",
           ["QUOTE", op],["QUOTE",'cacheInfo]],["QUOTE", cacheVector]]]


bfNamespace x ==
  ['%Namespace,x]

bfNameOnly: %Thing -> %Form
bfNameOnly x==
  x is "t" => ["T"]
  [x]

bfNameArgs: (%Thing,%Thing) -> %List %Form
bfNameArgs (x,y)==
  y :=
    y is ["TUPLE",:.] => rest y
    [y]
  [x,:y]
 
bfCreateDef: %Thing -> %Form
bfCreateDef x==
  x is [f] => ["DEFCONSTANT",f,["LIST",["QUOTE",f]]]
  a := [bfGenSymbol() for i in rest x]
  ["DEFUN",first x,a,["CONS",["QUOTE",first x],["LIST",:a]]]

bfCaseItem: (%Thing,%Thing) -> %Form
bfCaseItem(x,y) ==
  [x,y]

bfCase: (%Thing,%Thing) -> %Form
bfCase(x,y)==
  -- Introduce a temporary to hold the value of the scrutinee.
  -- To minimize the number of GENSYMS and assignments, we want
  -- to do this only when the scrutinee is not reduced yet.
  g := 
    atom x => x 
    bfGenSymbol()
  body := ["CASE",["CAR", g], :bfCaseItems(g,y)]
  sameObject?(g,x) => body
  ["LET",[[g,x]],body]

bfCaseItems: (%Thing,%List %Form) -> %List %Form
bfCaseItems(g,x) ==  
  [bfCI(g,i,j) for [i,j] in x]

bfCI: (%Thing,%Thing,%Thing) -> %Form
bfCI(g,x,y)==
  a := rest x
  a = nil => [first x,y]
  b := [[i,bfCARCDR(j,g)] for i in a for j in 1.. | i isnt "DOT"]
  b = nil => [first x,y]
  [first x,["LET",b,y]]

bfCARCDR: (%Short,%Thing) -> %Form
bfCARCDR(n,g) ==
  [makeSymbol strconc('"CA",bfDs n,'"R"),g]

bfDs: %Short -> %String 
bfDs n == 
  n = 0 => '""
  strconc('"D",bfDs(n-1))

bfHandlers(n,e,hs) == main(n,e,hs,nil) where
  main(n,e,hs,xs) ==
    hs = nil =>
      ["COND",
        :reverse!
          [[true,["THROW",KEYWORD::OPEN_-AXIOM_-CATCH_-POINT,n]],:xs]]
    hs is [['%Catch,['%Signature,v,t],s],:hs'] =>
      t := 
        symbol? t => ["QUOTE",[t]] -- instantiate niladic type ctor
        ["QUOTE",t]
      main(n,e,hs',[[bfQ(["CAR",e],t),["LET",[[v,["CDR",e]]],s]],:xs])
    bpTrap()

codeForCatchHandlers(g,e,cs) ==
  ehTest := ['AND,['CONSP,g],
              bfQ(['CAR,g],KEYWORD::OPEN_-AXIOM_-CATCH_-POINT)]
  ["LET",[[g,["CATCH",KEYWORD::OPEN_-AXIOM_-CATCH_-POINT,e]]],
    ["COND",[ehTest,bfHandlers(g,["CDR",g],cs)],[true,g]]]

++ Generate code for try-catch expressions.
bfTry: (%Thing,%List %Form) -> %Thing
bfTry(e,cs) ==
  g := gensym()
  cs is [:cs',f] and f is ['%Finally,s] =>
    cs' = nil => ["UNWIND-PROTECT",e,s]
    ["UNWIND-PROTECT",codeForCatchHandlers(g,e,cs'),s]
  codeForCatchHandlers(g,e,cs)

++ Generate code for `throw'-expressions
bfThrow e ==
  t := nil
  x := nil
  if e is ["%Pretend",:.] then
    t := third e
    x := second e
  else
    t := "SystemException"
    x := e
  t :=
    symbol? t => ["QUOTE",[t]]
    ["QOUTE",t]
  ["THROW",KEYWORD::OPEN_-AXIOM_-CATCH_-POINT,
    ["CONS",KEYWORD::OPEN_-AXIOM_-CATCH_-POINT,["CONS",t,x]]]

--% Type alias definition

backquote: (%Form,%List %Symbol) -> %Form
backquote(form,params) ==
  params = nil => quote  form
  atom form =>
    symbolMember?(form,params) => form
    quote form
  ["LIST",:[backquote(t,params) for t in form]]

genTypeAlias(head,body) ==
  [op,:args] := head
  ["DEFTYPE",op,args,backquote(body,args)]

--%
--% Native Interface Translation
--%

-- The Native Interface Translation support the following datatypes
--     void:  No value, useful only as function return type.
--
--     char:  Character type, corresponds to C type 'char'.
--
--     byte:  8-bit data type for the unit of information; corresponds 
--            to C type 'unsigned char' on 8-bit char machines.
--
--     Note:  We require 2's complement representation.
--
--     int8:  8-bit signed integer data type; int8_t in ISO C.
--    uint8:  8-bit unsigned integer data type; uint8_t in ISO C.
--    int16:  16-bit signed integer data type; int16_t is ISO C.
--   uint16:  16-bit unsigned integer data type; uint16_t in ISO C.
--    int32:  32-bit signed integer data type; int32_t in ISO C.
--   uint32:  32-bit unsigned integer data type; uint32_t in ISO C.
--    int64:  64-bit signed integer data type; int64_t in ISO C.
--   uint64:  64-bit unsigned integer data type; uint64_t in ISO C.
--
--      int:  Native integer data type.  Ideally should be wide enough
--            to represent native address space.  However, only ECL
--            and GCL seems to give that guarantee at the moment.
--
--    float:  single precision datatype for floating poing values.
--  float32   Corresponds to C type 'float'.  On most architecture,
--            this is a 32-bit precision IEEE 756 data type.
--
--   double:  double precision datatype for floating point values.
--  float64   Corresponds to C type 'double'.  On most architecture,
--            this is a 64-bit precision IEEE 756 data type.
--
--   string:  a data type for strings of characters.  The general
--            semantics is that a string is passed by value (e.g.
--            copied into a separate storage) to a native
--            function.  In many cases, that is appropriate (e.g.
--            mkdir "foo") if just wasteful.  In other cases, that is
--            not appropriate, as the native function may expect a
--            pass-by-reference semantics, e.g. modify the argument.
--            Consequently, argument types may be combined with the
--            modifiers `readonly' and `writeonly'.  Note that a
--            function return type may not use modifiers.
--            Corresponds to C's notion of NUL-terminated string,
--            'char*'.  In particular, the length of a string is
--            stored as separate datum part of the data being
--            transmitted.
--
--   buffer:  A data type constructor for array of simple data 
--            (e.g. array of bytes, array of float, array of double).
--            This is used to communicate data between native
--            functions and OpenAxiom functions.  The `buffer' type
--            constructor must be used in conjunction with one of the 
--            modifiers `readonly', `writeonly', or `readwrite', and 
--            instantiated with one of `char', `byte', `int', `float',
--            and `double'.  It cannot be used as function return type.
--            Note that the length of the array is not stored as 
--            part of the data being transmitted.
--
--  pointer:  A data type constructor for pointer to simple data 
--            This is used to communicate pointer to foreign data 
--            between native functions and OpenAxiom functions.
--            The `buffer' type constructor must be used in
--            conjunction with one of the modifiers `readonly',
--            `writeonly', or `readwrite'.

$NativeSimpleDataTypes ==
  '(char   byte    int   pointer
    int8   uint8
    int16  uint16
    int32  uint32
    int64  uint64
    float  float32
    double float64)

$NativeSimpleReturnTypes ==
  [:$NativeSimpleDataTypes,:'(void string)]

++ Returns true if `t' is a simple native data type.
isSimpleNativeType t ==
  objectMember?(t,$NativeSimpleReturnTypes)

coreSymbol: %Symbol -> %Symbol
coreSymbol s ==
  makeSymbol(symbolName s, "AxiomCore")

bootSymbol: %Symbol -> %Symbol
bootSymbol s ==
  makeSymbol symbolName s


unknownNativeTypeError t ==
  fatalError strconc('"unsupported native type: ", PNAME t)


nativeType t ==
  t = nil => t
  atom t =>
    t' := rest ASSOC(coreSymbol t,$NativeTypeTable) => 
      t' := 
	%hasFeature KEYWORD::SBCL => bfColonColon("SB-ALIEN", t')
	%hasFeature KEYWORD::CLISP => bfColonColon("FFI",t')
	t'
      -- ??? decree we have not discovered Unicode yet.
      t is "string" and %hasFeature KEYWORD::SBCL =>
	[t',KEYWORD::EXTERNAL_-FORMAT,KEYWORD::ASCII,
	   KEYWORD::ELEMENT_-TYPE, "BASE-CHAR"]
      t'
    t in '(byte uint8) =>
      %hasFeature KEYWORD::SBCL => [bfColonColon("SB-ALIEN","UNSIGNED"),8]
      %hasFeature KEYWORD::CLISP => bfColonColon("FFI","UINT8")
      %hasFeature KEYWORD::ECL or %hasFeature KEYWORD::CLOZURE =>
        KEYWORD::UNSIGNED_-BYTE
      nativeType "char"           -- approximate by 'char' for GCL
    t is "int16" =>
      %hasFeature KEYWORD::SBCL => [bfColonColon("SB-ALIEN","SIGNED"),16]
      %hasFeature KEYWORD::CLISP => bfColonColon("FFI","INT16")
      %hasFeature KEYWORD::ECL and %hasFeature KEYWORD::UINT16_-T =>
         KEYWORD::INT16_-T
      %hasFeature KEYWORD::CLOZURE => KEYWORD::SIGNED_-HALFWORD
      unknownNativeTypeError t
    t is "uint16" =>
      %hasFeature KEYWORD::SBCL => [bfColonColon("SB-ALIEN","UNSIGNED"),16]
      %hasFeature KEYWORD::CLISP => bfColonColon("FFI","UINT16")
      %hasFeature KEYWORD::ECL and %hasFeature KEYWORD::UINT16_-T =>
         KEYWORD::UINT16_-T
      %hasFeature KEYWORD::CLOZURE => KEYWORD::UNSIGNED_-HALFWORD
      unknownNativeTypeError t
    t is "int32" =>
      %hasFeature KEYWORD::SBCL => [bfColonColon("SB-ALIEN","SIGNED"),32]
      %hasFeature KEYWORD::CLISP => bfColonColon("FFI","INT32")
      %hasFeature KEYWORD::ECL and %hasFeature KEYWORD::UINT32_-T =>
         KEYWORD::INT32_-T
      %hasFeature KEYWORD::CLOZURE => KEYWORD::SIGNED_-FULLWORD
      unknownNativeTypeError t
    t is "uint32" =>
      %hasFeature KEYWORD::SBCL => [bfColonColon("SB-ALIEN","UNSIGNED"),32]
      %hasFeature KEYWORD::CLISP => bfColonColon("FFI","INT32")
      %hasFeature KEYWORD::ECL and %hasFeature KEYWORD::UINT32_-T =>
         KEYWORD::UINT32_-T
      %hasFeature KEYWORD::CLOZURE => KEYWORD::UNSIGNED_-FULLWORD
      unknownNativeTypeError t
    t is "int64" =>
      %hasFeature KEYWORD::SBCL => [bfColonColon("SB-ALIEN","SIGNED"),64]
      %hasFeature KEYWORD::CLISP => bfColonColon("FFI","INT64")
      %hasFeature KEYWORD::ECL and %hasFeature KEYWORD::UINT64_-T =>
         KEYWORD::INT64_-T
      %hasFeature KEYWORD::CLOZURE => KEYWORD::SIGNED_-DOUBLEWORD
      unknownNativeTypeError t
    t is "uint64" =>
      %hasFeature KEYWORD::SBCL => [bfColonColon("SB-ALIEN","UNSIGNED"),64]
      %hasFeature KEYWORD::CLISP => bfColonColon("FFI","UINT64")
      %hasFeature KEYWORD::ECL and %hasFeature KEYWORD::UINT64_-T =>
         KEYWORD::UINT64_-T
      %hasFeature KEYWORD::CLOZURE => KEYWORD::UNSIGNED_-DOUBLEWORD
      unknownNativeTypeError t
    t is "float32" => nativeType "float"
    t is "float64" => nativeType "double"
    t is "pointer" =>
      %hasFeature KEYWORD::GCL => "fixnum"
      %hasFeature KEYWORD::ECL => KEYWORD::POINTER_-VOID
      %hasFeature KEYWORD::SBCL => ["*",bfColonColon("SB-ALIEN","VOID")]
      %hasFeature KEYWORD::CLISP => bfColonColon("FFI","C-POINTER")
      %hasFeature KEYWORD::CLOZURE => KEYWORD::ADDRESS
      unknownNativeTypeError t
    unknownNativeTypeError t
  -- composite, reference type.
  first t is "buffer" =>
    %hasFeature KEYWORD::GCL => "OBJECT"
    %hasFeature KEYWORD::ECL => KEYWORD::OBJECT
    %hasFeature KEYWORD::SBCL => ["*",nativeType second t]
    %hasFeature KEYWORD::CLISP => bfColonColon("FFI","C-POINTER")
    %hasFeature KEYWORD::CLOZURE => [KEYWORD::_*, nativeType second t]
    unknownNativeTypeError t
  first t is "pointer" =>
    -- we don't bother looking at what the pointer points to.
    nativeType "pointer"
  unknownNativeTypeError t

++ Check that `t' is a valid return type for a native function, and
++ returns its translation
nativeReturnType t ==
  objectMember?(t,$NativeSimpleReturnTypes) => nativeType t
  coreError strconc('"invalid return type for native function: ", 
              PNAME t)

++ Check that `t' is a valid parameter type for a native function,
++ and returns its translation.
nativeArgumentType t ==
  objectMember?(t,$NativeSimpleDataTypes) => nativeType t
  -- Allow 'string'  for `pass-by-value'
  t is "string" => nativeType t
  -- anything else must use a modified reference type.
  atom t or #t ~= 2 => 
     coreError '"invalid argument type for a native function"
  [m,[c,t']] := t
  -- Require a modifier.
  not (m in '(readonly writeonly readwrite)) =>
    coreError '"missing modifier for argument type for a native function"
  -- Only 'pointer' and 'buffer' can be instantiated.
  not (c in '(buffer pointer)) =>
    coreError '"expected 'buffer' or 'pointer' type instance"
  not objectMember?(t',$NativeSimpleDataTypes) =>
    coreError '"expected simple native data type"
  nativeType second t
  
++ True if objects of type native type `t' are sensible to GC.
needsStableReference? t ==
  t is [m,:.] and m in '(readonly writeonly readwrite)

++ coerce argument `a' to native type `t', in preparation for
++ a call to a native functions.
coerceToNativeType(a,t) ==
  -- GCL, ECL, CLISP, and CLOZURE don't do it this way.
  %hasFeature KEYWORD::GCL or %hasFeature KEYWORD::ECL
     or %hasFeature KEYWORD::CLISP or %hasFeature KEYWORD::CLOZURE => a
  %hasFeature KEYWORD::SBCL =>
    not needsStableReference? t => a
    [.,[c,y]] := t
    c is "buffer" => [bfColonColon("SB-SYS","VECTOR-SAP"),a]
    c is "pointer" => [bfColonColon("SB-SYS","ALIEN-SAP"),a]
    needsStableReference? t =>
      fatalError strconc('"don't know how to coerce argument for native type",
        PNAME c)
  fatalError '"don't know how to coerce argument for native type"


++ Generate GCL native translation for import op: s -> t for op'
++ `argtypes' is the list of GCL FFI names for types in `s'.
++ `rettype' is the GCL FFI name for `t'.
genGCLnativeTranslation(op,s,t,op') ==
  argtypes := [nativeArgumentType x for x in s]
  rettype := nativeReturnType t
  -- If a simpel DEFENTRY will do, go for it
  and/[isSimpleNativeType x for x in [t,:s]] =>
    [["DEFENTRY", op, argtypes, [rettype, symbolName op']]]
  -- Otherwise, do it the hard way.
  [["CLINES",ccode], ["DEFENTRY", op, argtypes, [rettype, cop]]] where
    cop := strconc(symbolName op','"__stub")
    ccode := 
      "strconc"/[gclTypeInC t, '" ", cop, '"(",
	 :[cparm(x,a) for x in tails s for a in tails cargs],
	   '") { ", (t isnt "void" => '"return "; ""),
	     symbolName op', '"(",
	       :[gclArgsInC(x,a) for x in tails s for a in tails cargs],
		  '"); }" ]
                where cargs := [mkCArgName i for i in 0..(#s - 1)]
    mkCArgName i == strconc('"x",toString i)
    cparm(x,a) ==
      strconc(gclTypeInC first x, '" ", first a,
	(rest x => '", "; '""))
    gclTypeInC x ==
      objectMember?(x,$NativeSimpleDataTypes) => symbolName x
      x is "void" => '"void"
      x is "string" => '"char*"
      x is [.,["pointer",.]] => "fixnum"
      '"object" 
    gclArgInC(x,a) ==
      objectMember?(x,$NativeSimpleDataTypes) => a
      x is "string" => a   -- GCL takes responsability for the conversion
      [.,[c,y]] := x
      c is "pointer" => a
      y is "char" => strconc(a,'"->st.st__self")
      y is "byte" => strconc(a,'"->ust.ust__self")
      y is "int" => strconc(a,'"->fixa.fixa__self")
      y is "float" => strconc(a,'"->sfa.sfa__self")
      y is "double" => strconc(a,'"->lfa.lfa__self")
      coreError '"unknown argument type"
    gclArgsInC(x,a) ==
      strconc(gclArgInC(first x, first a),
	(rest x => '", "; '""))  

genECLnativeTranslation(op,s,t,op') ==
  args := nil
  argtypes := nil
  for x in s repeat
     argtypes := [nativeArgumentType x,:argtypes]
     args := [gensym(),:args]
  args := reverse args
  rettype := nativeReturnType t
  [["DEFUN",op, args,
    [bfColonColon("FFI","C-INLINE"),args, reverse! argtypes,
      rettype, callTemplate(op',#args,s), 
        KEYWORD::ONE_-LINER, true]]] where
	  callTemplate(op,n,s) ==
	    "strconc"/[symbolName op,'"(",
	      :[sharpArg(i,x) for i in 0..(n-1) for x in s],'")"]
	  sharpArg(i,x) == 
	    i = 0 => strconc('"(#0)",selectDatum x)
	    strconc('",",'"(#", toString i, '")", selectDatum x)
	  selectDatum x ==
	    isSimpleNativeType x => '""
	    [.,[c,y]] := x
            c is "buffer" => 
	      y is "char" or y is "byte" => 
                AxiomCore::$ECLVersionNumber < 90100 => '"->vector.self.ch"
                y is "char" => '"->vector.self.i8"
                '"->vector.self.b8"
	      y is "int" => '"->vector.self.fix"
	      y is "float" => '"->vector.self.sf"
	      y is "double" => '"->vector.self.df"
	      coreError '"unknown argument to buffer type constructor"
            c is "pointer" => '""
            coreError '"unknown type constructor"

genCLISPnativeTranslation(op,s,t,op') ==
  -- check parameter types and return types.
  rettype := nativeReturnType t
  argtypes := [nativeArgumentType x for x in s]

  -- There is a curious bug in the CLisp's FFI support whereby
  -- foreign declarations compiled separately will have the wrong
  -- types when used in other modules.  We work around that problem
  -- by defining forwarding functions to the foreign declarations
  -- in the same module the latter are declared.  Even if and when
  -- that bug is fixed, we still need forwarding function because,
  -- CLISP's FFI takes every step to ensure that Lisp world objects
  -- do not mix with C world object, presumably because they are not
  -- from the same class.  Consequently, we must allocate C-storage,
  -- copy data there, pass pointers to them, and possibly copy
  -- them back.  Ugh.  
  n := makeSymbol strconc(symbolName op, '"%clisp-hack")
  parms := [gensym '"parm" for x in s]  -- parameters of the forward decl.

  -- Now, separate non-simple data from the rest.  This is a triple-list
  -- of the form ((parameter boot-type . ffi-type) ...)
  unstableArgs := nil
  for p in parms for x in s for y in argtypes repeat
    needsStableReference? x =>
      unstableArgs := [[p,x,:y],:unstableArgs]

  -- The actual FFI declaration for the native call.  Note that 
  -- parameter of non-simple datatype are described as being pointers.
  foreignDecl := 
    [bfColonColon("FFI","DEF-CALL-OUT"),n,
      [KEYWORD::NAME,symbolName op'],
	[KEYWORD::ARGUMENTS,:[[a, x] for x in argtypes for a in parms]],
	  [KEYWORD::RETURN_-TYPE, rettype],
	      [KEYWORD::LANGUAGE,KEYWORD::STDC]]

  -- The forwarding function.  We have to introduce local foreign
  -- variables to hold the address of converted Lisp objects.  Then
  -- we have to copy back those that are `writeonly' or `readwrite' to
  -- simulate the reference semantics.  Don't ever try to pass around
  -- gigantic buffer, you might find out that it is insanely inefficient.
  forwardingFun := 
    unstableArgs = nil => ["DEFUN",op,parms, [n,:parms]]
    localPairs := [[a,x,y,:gensym '"loc"] for [a,x,:y] in unstableArgs]
    call := 
      [n,:[actualArg(p,localPairs) for p in parms]] where
	    actualArg(p,pairs) ==
	      a' := rest ASSOC(p,pairs) => rest rest a'
	      p
    -- Fix up the call if there is any `write' parameter.
    call := 
      fixups := [q | not null (q := copyBack p) for p in localPairs] where
                  copyBack [p,x,y,:a] ==
                    x is ["readonly",:.] => nil
                    ["SETF", p, [bfColonColon("FFI","FOREIGN-VALUE"), a]]
      fixups = nil => [call]
      [["PROG1",call, :fixups]]
    -- Set up local foreign variables to hold address of traveling data
    for [p,x,y,:a] in localPairs repeat
      call := 
        [[bfColonColon("FFI","WITH-FOREIGN-OBJECT"),
            [a, ["FUNCALL",
               ["INTERN",'"getCLISPType",'"BOOTTRAN"], p], p], :call]]
    -- Finally, define the forwarding function.
    ["DEFUN",op,parms,:call]
  $foreignsDefsForCLisp := [foreignDecl,:$foreignsDefsForCLisp]
  [forwardingFun]

getCLISPType a ==
  [bfColonColon("FFI","C-ARRAY"), #a]


genSBCLnativeTranslation(op,s,t,op') ==    
  -- check return type and argument types.
  rettype := nativeReturnType t
  argtypes := [nativeArgumentType x for x in s]

  args := [gensym() for x in s]
  unstableArgs := nil
  newArgs := nil
  for a in args for x in s repeat
    newArgs := [coerceToNativeType(a,x), :newArgs]
    if needsStableReference? x then
      unstableArgs := [a,:unstableArgs]
  
  op' :=
    %hasFeature KEYWORD::WIN32 => strconc('"__",symbolName op')
    symbolName op'
    
  unstableArgs = nil =>
    [["DEFUN",op,args,
      [makeSymbol('"ALIEN-FUNCALL",'"SB-ALIEN"),
	[makeSymbol('"EXTERN-ALIEN",'"SB-ALIEN"), op',
	  ["FUNCTION",rettype,:argtypes]], :args]]]
  [["DEFUN",op,args,
    [bfColonColon("SB-SYS","WITH-PINNED-OBJECTS"), reverse! unstableArgs,
      [makeSymbol('"ALIEN-FUNCALL",'"SB-ALIEN"),
	[makeSymbol('"EXTERN-ALIEN",'"SB-ALIEN"), op',
	  ["FUNCTION",rettype,:argtypes]], :reverse! newArgs]]]]



++ Generate Clozure CL's equivalent of import declaration
genCLOZUREnativeTranslation(op,s,t,op') ==
  -- check parameter types and return types.
  rettype := nativeReturnType t
  argtypes := [nativeArgumentType x for x in s]

  -- Build parameter list for the forwarding function
  parms := [gensym '"parm" for x in s]

  -- Separate string arguments and array arguments from scalars.
  -- These array arguments need to be pinned down, and the string
  -- arguments need to stored in a stack-allocaed NTBS.
  strPairs := nil 
  aryPairs := nil
  for p in parms for x in s repeat
    x is "string" => strPairs := [[p,:gensym '"loc"], :strPairs]
    x is [.,["buffer",.]] => aryPairs := [[p,:gensym '"loc"], :aryPairs]

  -- Build the actual foreign function call.
  -- Note that Clozure CL does not mangle foreign function call for
  -- us, so we're left with more platform dependencies than needed.
  if %hasFeature KEYWORD::DARWIN then
    op' := strconc('"__",op')
  call := [bfColonColon("CCL","EXTERNAL-CALL"), STRING op', :args, rettype]
            where
              args() == [:[x, parm] for x in argtypes for p in parms]
              parm() ==
                    p' := ASSOC(p, strPairs) => rest p'
                    p' := ASSOC(p, aryPairs) => rest p'
                    p

  -- If the foreign call returns a C-string, turn it into a Lisp string.
  -- Note that if the C-string was malloc-ed, this will leak storage.
  if t is "string" then
    call := [bfColonColon("CCL","GET-CSTRING"), call]

  -- If we have array arguments from Boot, bind pointers to initial data.
  for arg in aryPairs repeat
    call := [bfColonColon("CCL", "WITH-POINTER-TO-IVECTOR"),
              [rest arg, first arg], call]

  -- Finally, if we have string arguments from Boot, copy them to
  -- stack-allocated NTBS.
  if strPairs ~= nil then
    call := [bfColonColon("CCL", "WITH-CSTRS"),
              [[rest arg, first arg] for arg in strPairs], call]

  -- Finally, return the definition form
  [["DEFUN", op, parms, call]]

++ Generate an import declaration for `op' as equivalent of the
++ foreign signature `sig'.  Here, `foreign' operationally means that
++ the entity is from the C language world. 
genImportDeclaration(op, sig) ==
  sig isnt ["%Signature", op', m] => coreError '"invalid signature"
  m isnt ["%Mapping", t, s] => coreError '"invalid function type"
  if s ~= nil and symbol? s then s := [s]

  %hasFeature KEYWORD::GCL => genGCLnativeTranslation(op,s,t,op')
  %hasFeature KEYWORD::SBCL => genSBCLnativeTranslation(op,s,t,op')
  %hasFeature KEYWORD::CLISP => genCLISPnativeTranslation(op,s,t,op')
  %hasFeature KEYWORD::ECL => genECLnativeTranslation(op,s,t,op')
  %hasFeature KEYWORD::CLOZURE => genCLOZUREnativeTranslation(op,s,t,op')
  fatalError '"import declaration not implemented for this Lisp"