1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra triset.spad}
\author{Marc Moreno Maza}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category TSETCAT TriangularSetCategory}
<<category TSETCAT TriangularSetCategory>>=
import Boolean
import NonNegativeInteger
import OutputForm
import List
)abbrev category TSETCAT TriangularSetCategory
++ Author: Marc Moreno Maza (marc@nag.co.uk)
++ Date Created: 04/26/1994
++ Date Last Updated: 12/15/1998
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: polynomial, multivariate, ordered variables set
++ Description:
++ The category of triangular sets of multivariate polynomials
++ with coefficients in an integral domain.
++ Let \axiom{R} be an integral domain and \axiom{V} a finite ordered set of
++ variables, say \axiom{X1 < X2 < ... < Xn}.
++ A set \axiom{S} of polynomials in \axiom{R[X1,X2,...,Xn]} is triangular
++ if no elements of \axiom{S} lies in \axiom{R}, and if two distinct
++ elements of \axiom{S} have distinct main variables.
++ Note that the empty set is a triangular set. A triangular set is not
++ necessarily a (lexicographical) Groebner basis and the notion of
++ reduction related to triangular sets is based on the recursive view
++ of polynomials. We recall this notion here and refer to [1] for more details.
++ A polynomial \axiom{P} is reduced w.r.t a non-constant polynomial
++ \axiom{Q} if the degree of \axiom{P} in the main variable of \axiom{Q}
++ is less than the main degree of \axiom{Q}.
++ A polynomial \axiom{P} is reduced w.r.t a triangular set \axiom{T}
++ if it is reduced w.r.t. every polynomial of \axiom{T}. \newline
++ References :
++ [1] P. AUBRY, D. LAZARD and M. MORENO MAZA "On the Theories
++ of Triangular Sets" Journal of Symbol. Comp. (to appear)
++ Version: 4.
TriangularSetCategory(R:IntegralDomain,E:OrderedAbelianMonoidSup,_
V:OrderedSet,P:RecursivePolynomialCategory(R,E,V)):
Category ==
PolynomialSetCategory(R,E,V,P) with
shallowlyMutable
infRittWu? : ($,$) -> Boolean
++ \axiom{infRittWu?(ts1,ts2)} returns true iff \axiom{ts2} has higher rank
++ than \axiom{ts1} in Wu Wen Tsun sense.
basicSet : (List P,((P,P)->Boolean)) -> Union(Record(bas:$,top:List P),"failed")
++ \axiom{basicSet(ps,redOp?)} returns \axiom{[bs,ts]} where
++ \axiom{concat(bs,ts)} is \axiom{ps} and \axiom{bs}
++ is a basic set in Wu Wen Tsun sense of \axiom{ps} w.r.t
++ the reduction-test \axiom{redOp?}, if no non-zero constant
++ polynomial lie in \axiom{ps}, otherwise \axiom{"failed"} is returned.
basicSet : (List P,(P->Boolean),((P,P)->Boolean)) -> Union(Record(bas:$,top:List P),"failed")
++ \axiom{basicSet(ps,pred?,redOp?)} returns the same as \axiom{basicSet(qs,redOp?)}
++ where \axiom{qs} consists of the polynomials of \axiom{ps}
++ satisfying property \axiom{pred?}.
initials : $ -> List P
++ \axiom{initials(ts)} returns the list of the non-constant initials
++ of the members of \axiom{ts}.
degree : $ -> NonNegativeInteger
++ \axiom{degree(ts)} returns the product of main degrees of the
++ members of \axiom{ts}.
quasiComponent : $ -> Record(close:List P,open:List P)
++ \axiom{quasiComponent(ts)} returns \axiom{[lp,lq]} where \axiom{lp} is the list
++ of the members of \axiom{ts} and \axiom{lq}is \axiom{initials(ts)}.
normalized? : (P,$) -> Boolean
++ \axiom{normalized?(p,ts)} returns true iff \axiom{p} and all its iterated initials
++ have degree zero w.r.t. the main variables of the polynomials of \axiom{ts}
normalized? : $ -> Boolean
++ \axiom{normalized?(ts)} returns true iff for every axiom{p} in axiom{ts} we have
++ \axiom{normalized?(p,us)} where \axiom{us} is \axiom{collectUnder(ts,mvar(p))}.
reduced? : (P,$,((P,P) -> Boolean)) -> Boolean
++ \axiom{reduced?(p,ts,redOp?)} returns true iff \axiom{p} is reduced w.r.t.
++ in the sense of the operation \axiom{redOp?}, that is if for every \axiom{t} in
++ \axiom{ts} \axiom{redOp?(p,t)} holds.
stronglyReduced? : (P,$) -> Boolean
++ \axiom{stronglyReduced?(p,ts)} returns true iff \axiom{p}
++ is reduced w.r.t. \axiom{ts}.
headReduced? : (P,$) -> Boolean
++ \axiom{headReduced?(p,ts)} returns true iff the head of \axiom{p} is
++ reduced w.r.t. \axiom{ts}.
initiallyReduced? : (P,$) -> Boolean
++ \axiom{initiallyReduced?(p,ts)} returns true iff \axiom{p} and all its iterated initials
++ are reduced w.r.t. to the elements of \axiom{ts} with the same main variable.
autoReduced? : ($,((P,List(P)) -> Boolean)) -> Boolean
++ \axiom{autoReduced?(ts,redOp?)} returns true iff every element of \axiom{ts} is
++ reduced w.r.t to every other in the sense of \axiom{redOp?}
stronglyReduced? : $ -> Boolean
++ \axiom{stronglyReduced?(ts)} returns true iff every element of \axiom{ts} is
++ reduced w.r.t to any other element of \axiom{ts}.
headReduced? : $ -> Boolean
++ headReduced?(ts) returns true iff the head of every element of \axiom{ts} is
++ reduced w.r.t to any other element of \axiom{ts}.
initiallyReduced? : $ -> Boolean
++ initiallyReduced?(ts) returns true iff for every element \axiom{p} of \axiom{ts}
++ \axiom{p} and all its iterated initials are reduced w.r.t. to the other elements
++ of \axiom{ts} with the same main variable.
reduce : (P,$,((P,P) -> P),((P,P) -> Boolean) ) -> P
++ \axiom{reduce(p,ts,redOp,redOp?)} returns a polynomial \axiom{r} such that
++ \axiom{redOp?(r,p)} holds for every \axiom{p} of \axiom{ts}
++ and there exists some product \axiom{h} of the initials of the members
++ of \axiom{ts} such that \axiom{h*p - r} lies in the ideal generated by \axiom{ts}.
++ The operation \axiom{redOp} must satisfy the following conditions.
++ For every \axiom{p} and \axiom{q} we have \axiom{redOp?(redOp(p,q),q)}
++ and there exists an integer \axiom{e} and a polynomial \axiom{f} such that
++ \axiom{init(q)^e*p = f*q + redOp(p,q)}.
rewriteSetWithReduction : (List P,$,((P,P) -> P),((P,P) -> Boolean) ) -> List P
++ \axiom{rewriteSetWithReduction(lp,ts,redOp,redOp?)} returns a list \axiom{lq} of
++ polynomials such that \axiom{[reduce(p,ts,redOp,redOp?) for p in lp]} and \axiom{lp}
++ have the same zeros inside the regular zero set of \axiom{ts}. Moreover, for every
++ polynomial \axiom{q} in \axiom{lq} and every polynomial \axiom{t} in \axiom{ts}
++ \axiom{redOp?(q,t)} holds and there exists a polynomial \axiom{p}
++ in the ideal generated by \axiom{lp} and a product \axiom{h} of \axiom{initials(ts)}
++ such that \axiom{h*p - r} lies in the ideal generated by \axiom{ts}.
++ The operation \axiom{redOp} must satisfy the following conditions.
++ For every \axiom{p} and \axiom{q} we have \axiom{redOp?(redOp(p,q),q)}
++ and there exists an integer \axiom{e} and a polynomial \axiom{f}
++ such that \axiom{init(q)^e*p = f*q + redOp(p,q)}.
stronglyReduce : (P,$) -> P
++ \axiom{stronglyReduce(p,ts)} returns a polynomial \axiom{r} such that
++ \axiom{stronglyReduced?(r,ts)} holds and there exists some product
++ \axiom{h} of \axiom{initials(ts)}
++ such that \axiom{h*p - r} lies in the ideal generated by \axiom{ts}.
headReduce : (P,$) -> P
++ \axiom{headReduce(p,ts)} returns a polynomial \axiom{r} such that \axiom{headReduce?(r,ts)}
++ holds and there exists some product \axiom{h} of \axiom{initials(ts)}
++ such that \axiom{h*p - r} lies in the ideal generated by \axiom{ts}.
initiallyReduce : (P,$) -> P
++ \axiom{initiallyReduce(p,ts)} returns a polynomial \axiom{r}
++ such that \axiom{initiallyReduced?(r,ts)}
++ holds and there exists some product \axiom{h} of \axiom{initials(ts)}
++ such that \axiom{h*p - r} lies in the ideal generated by \axiom{ts}.
removeZero: (P, $) -> P
++ \axiom{removeZero(p,ts)} returns \axiom{0} if \axiom{p} reduces
++ to \axiom{0} by pseudo-division w.r.t \axiom{ts} otherwise
++ returns a polynomial \axiom{q} computed from \axiom{p}
++ by removing any coefficient in \axiom{p} reducing to \axiom{0}.
collectQuasiMonic: $ -> $
++ \axiom{collectQuasiMonic(ts)} returns the subset of \axiom{ts}
++ consisting of the polynomials with initial in \axiom{R}.
reduceByQuasiMonic: (P, $) -> P
++ \axiom{reduceByQuasiMonic(p,ts)} returns the same as
++ \axiom{remainder(p,collectQuasiMonic(ts)).polnum}.
zeroSetSplit : List P -> List $
++ \axiom{zeroSetSplit(lp)} returns a list \axiom{lts} of triangular sets such that
++ the zero set of \axiom{lp} is the union of the closures of the regular zero sets
++ of the members of \axiom{lts}.
zeroSetSplitIntoTriangularSystems : List P -> List Record(close:$,open:List P)
++ \axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular
++ systems \axiom{[[ts1,qs1],...,[tsn,qsn]]} such that the zero set of \axiom{lp}
++ is the union of the closures of the \axiom{W_i} where \axiom{W_i} consists
++ of the zeros of \axiom{ts} which do not cancel any polynomial in \axiom{qsi}.
first : $ -> Union(P,"failed")
++ \axiom{first(ts)} returns the polynomial of \axiom{ts} with greatest main variable
++ if \axiom{ts} is not empty, otherwise returns \axiom{"failed"}.
last : $ -> Union(P,"failed")
++ \axiom{last(ts)} returns the polynomial of \axiom{ts} with smallest main variable
++ if \axiom{ts} is not empty, otherwise returns \axiom{"failed"}.
rest : $ -> Union($,"failed")
++ \axiom{rest(ts)} returns the polynomials of \axiom{ts} with smaller main variable
++ than \axiom{mvar(ts)} if \axiom{ts} is not empty, otherwise returns "failed"
algebraicVariables : $ -> List(V)
++ \axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main
++ variables of the polynomials of \axiom{ts}.
algebraic? : (V,$) -> Boolean
++ \axiom{algebraic?(v,ts)} returns true iff \axiom{v} is the main variable of some
++ polynomial in \axiom{ts}.
select : ($,V) -> Union(P,"failed")
++ \axiom{select(ts,v)} returns the polynomial of \axiom{ts} with \axiom{v} as
++ main variable, if any.
extendIfCan : ($,P) -> Union($,"failed")
++ \axiom{extendIfCan(ts,p)} returns a triangular set which encodes the simple
++ extension by \axiom{p} of the extension of the base field defined by \axiom{ts},
++ according to the properties of triangular sets of the current domain.
++ If the required properties do not hold then "failed" is returned.
++ This operation encodes in some sense the properties of the
++ triangular sets of the current category. Is is used to implement
++ the \axiom{construct} operation to guarantee that every triangular
++ set build from a list of polynomials has the required properties.
extend : ($,P) -> $
++ \axiom{extend(ts,p)} returns a triangular set which encodes the simple
++ extension by \axiom{p} of the extension of the base field defined by \axiom{ts},
++ according to the properties of triangular sets of the current category
++ If the required properties do not hold an error is returned.
if V has Finite
then
coHeight : $ -> NonNegativeInteger
++ \axiom{coHeight(ts)} returns \axiom{size()\$V} minus \axiom{\#ts}.
add
GPS ==> GeneralPolynomialSet(R,E,V,P)
B ==> Boolean
RBT ==> Record(bas:$,top:List P)
ts:$ = us:$ ==
empty?(ts)$$ => empty?(us)$$
empty?(us)$$ => false
first(ts)::P =$P first(us)::P => rest(ts)::$ =$$ rest(us)::$
false
infRittWu?(ts,us) ==
empty?(us)$$ => not empty?(ts)$$
empty?(ts)$$ => false
p : P := (last(ts))::P
q : P := (last(us))::P
infRittWu?(p,q)$P => true
supRittWu?(p,q)$P => false
v : V := mvar(p)
infRittWu?(collectUpper(ts,v),collectUpper(us,v))$$
reduced?(p,ts,redOp?) ==
lp : List P := members(ts)
while (not empty? lp) and (redOp?(p,first(lp))) repeat
lp := rest lp
empty? lp
basicSet(ps,redOp?) ==
ps := remove(zero?,ps)
any?(ground?,ps) => "failed"::Union(RBT,"failed")
ps := sort(infRittWu?,ps)
p,b : P
bs := empty()$$
ts : List P := []
while not empty? ps repeat
b := first(ps)
bs := extend(bs,b)$$
ps := rest ps
while (not empty? ps) and (not reduced?((p := first(ps)),bs,redOp?)) repeat
ts := cons(p,ts)
ps := rest ps
([bs,ts]$RBT)::Union(RBT,"failed")
basicSet(ps,pred?,redOp?) ==
ps := remove(zero?,ps)
any?(ground?,ps) => "failed"::Union(RBT,"failed")
gps : List P := []
bps : List P := []
while not empty? ps repeat
p := first ps
ps := rest ps
if pred?(p)
then
gps := cons(p,gps)
else
bps := cons(p,bps)
gps := sort(infRittWu?,gps)
p,b : P
bs := empty()$$
ts : List P := []
while not empty? gps repeat
b := first(gps)
bs := extend(bs,b)$$
gps := rest gps
while (not empty? gps) and (not reduced?((p := first(gps)),bs,redOp?)) repeat
ts := cons(p,ts)
gps := rest gps
ts := sort(infRittWu?,concat(ts,bps))
([bs,ts]$RBT)::Union(RBT,"failed")
initials ts ==
lip : List P := []
empty? ts => lip
lp := members(ts)
while not empty? lp repeat
p := first(lp)
if not ground?((ip := init(p)))
then
lip := cons(primPartElseUnitCanonical(ip),lip)
lp := rest lp
removeDuplicates lip
degree ts ==
empty? ts => 0$NonNegativeInteger
lp := members ts
d : NonNegativeInteger := mdeg(first lp)
while not empty? (lp := rest lp) repeat
d := d * mdeg(first lp)
d
quasiComponent ts ==
[members(ts),initials(ts)]
normalized?(p,ts) ==
normalized?(p,members(ts))$P
stronglyReduced? (p,ts) ==
reduced?(p,members(ts))$P
headReduced? (p,ts) ==
stronglyReduced?(head(p),ts)
initiallyReduced? (p,ts) ==
lp : List (P) := members(ts)
red : Boolean := true
while (not empty? lp) and (not ground?(p)$P) and red repeat
while (not empty? lp) and (mvar(first(lp)) > mvar(p)) repeat
lp := rest lp
if (not empty? lp)
then
if (mvar(first(lp)) = mvar(p))
then
if reduced?(p,first(lp))
then
lp := rest lp
p := init(p)
else
red := false
else
p := init(p)
red
reduce(p: P,ts: S,redOp: (P,P)->P,redOp?: (P,P)->Boolean) ==
(empty? ts) or (ground? p) => p
ts0 := ts
while (not empty? ts) and (not ground? p) repeat
reductor := (first ts)::P
ts := (rest ts)::$
if not redOp?(p,reductor)
then
p := redOp(p,reductor)
ts := ts0
p
rewriteSetWithReduction(lp,ts,redOp,redOp?) ==
trivialIdeal? ts => lp
lp := remove(zero?,lp)
empty? lp => lp
any?(ground?,lp) => [1$P]
rs : List P := []
while not empty? lp repeat
p := first lp
lp := rest lp
p := primPartElseUnitCanonical reduce(p,ts,redOp,redOp?)
if not zero? p
then
if ground? p
then
lp := []
rs := [1$P]
else
rs := cons(p,rs)
removeDuplicates rs
stronglyReduce(p,ts) ==
reduce (p,ts,lazyPrem,reduced?)
headReduce(p,ts) ==
reduce (p,ts,headReduce,headReduced?)
initiallyReduce(p,ts) ==
reduce (p,ts,initiallyReduce,initiallyReduced?)
removeZero(p,ts) ==
(ground? p) or (empty? ts) => p
v := mvar(p)
ts_v_- := collectUnder(ts,v)
if algebraic?(v,ts)
then
q := lazyPrem(p,select(ts,v)::P)
zero? q => return q
zero? removeZero(q,ts_v_-) => return 0
empty? ts_v_- => p
q: P := 0
while positive? degree(p,v) repeat
q := removeZero(init(p),ts_v_-) * mainMonomial(p) + q
p := tail(p)
q + removeZero(p,ts_v_-)
reduceByQuasiMonic(p, ts) ==
(ground? p) or (empty? ts) => p
remainder(p,collectQuasiMonic(ts)).polnum
autoReduced?(ts : $,redOp? : ((P,List(P)) -> Boolean)) ==
empty? ts => true
lp : List (P) := members(ts)
p : P := first(lp)
lp := rest lp
while (not empty? lp) and redOp?(p,lp) repeat
p := first lp
lp := rest lp
empty? lp
stronglyReduced? ts ==
autoReduced? (ts, reduced?)
normalized? ts ==
autoReduced? (ts,normalized?)
headReduced? ts ==
autoReduced? (ts,headReduced?)
initiallyReduced? ts ==
autoReduced? (ts,initiallyReduced?)
mvar ts ==
empty? ts => error"Error from TSETCAT in mvar : #1 is empty"
mvar((first(ts))::P)$P
first ts ==
empty? ts => "failed"::Union(P,"failed")
lp : List(P) := sort(supRittWu?,members(ts))$(List P)
first(lp)::Union(P,"failed")
last ts ==
empty? ts => "failed"::Union(P,"failed")
lp : List(P) := sort(infRittWu?,members(ts))$(List P)
first(lp)::Union(P,"failed")
rest ts ==
empty? ts => "failed"::Union($,"failed")
lp : List(P) := sort(supRittWu?,members(ts))$(List P)
construct(rest(lp))::Union($,"failed")
coerce (ts:$) : List(P) ==
sort(supRittWu?,members(ts))$(List P)
algebraicVariables ts ==
[mvar(p) for p in members(ts)]
algebraic? (v,ts) ==
member?(v,algebraicVariables(ts))
select(ts: %,v: V): Union(P,"failed") ==
lp : List (P) := sort(supRittWu?,members(ts))$(List P)
while (not empty? lp) and (not (v = mvar(first lp))) repeat
lp := rest lp
empty? lp => "failed"::Union(P,"failed")
(first lp)::Union(P,"failed")
collectQuasiMonic ts ==
lp: List(P) := members(ts)
newlp: List(P) := []
while (not empty? lp) repeat
if ground? init(first(lp)) then newlp := cons(first(lp),newlp)
lp := rest lp
construct(newlp)
collectUnder (ts,v) ==
lp : List (P) := sort(supRittWu?,members(ts))$(List P)
while (not empty? lp) and (not (v > mvar(first lp))) repeat
lp := rest lp
construct(lp)
collectUpper (ts,v) ==
lp1 : List(P) := sort(supRittWu?,members(ts))$(List P)
lp2 : List(P) := []
while (not empty? lp1) and (mvar(first lp1) > v) repeat
lp2 := cons(first(lp1),lp2)
lp1 := rest lp1
construct(reverse lp2)
construct(lp:List(P)) ==
rif := retractIfCan(lp)@Union($,"failed")
not (rif case $) => error"in construct : LP -> $ from TSETCAT : bad arg"
rif::$
retractIfCan(lp:List(P)) ==
empty? lp => (empty()$$)::Union($,"failed")
lp := sort(supRittWu?,lp)
rif := retractIfCan(rest(lp))@Union($,"failed")
not (rif case $) => error"in retractIfCan : LP -> ... from TSETCAT : bad arg"
extendIfCan(rif::$,first(lp))@Union($,"failed")
extend(ts:$,p:P):$ ==
eif := extendIfCan(ts,p)@Union($,"failed")
not (eif case $) => error"in extend : ($,P) -> $ from TSETCAT : bad ars"
eif::$
if V has Finite
then
coHeight ts ==
n := size()$V
m := #(members ts)
subtractIfCan(n,m)$NonNegativeInteger::NonNegativeInteger
@
\section{domain GTSET GeneralTriangularSet}
<<domain GTSET GeneralTriangularSet>>=
)abbrev domain GTSET GeneralTriangularSet
++ Author: Marc Moreno Maza (marc@nag.co.uk)
++ Date Created: 10/06/1995
++ Date Last Updated: 06/12/1996
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Description:
++ A domain constructor of the category \axiomType{TriangularSetCategory}.
++ The only requirement for a list of polynomials to be a member of such
++ a domain is the following: no polynomial is constant and two distinct
++ polynomials have distinct main variables. Such a triangular set may
++ not be auto-reduced or consistent. Triangular sets are stored
++ as sorted lists w.r.t. the main variables of their members but they
++ are displayed in reverse order.\newline
++ References :
++ [1] P. AUBRY, D. LAZARD and M. MORENO MAZA "On the Theories
++ of Triangular Sets" Journal of Symbol. Comp. (to appear)
++ Version: 1
GeneralTriangularSet(R,E,V,P) : Exports == Implementation where
R : IntegralDomain
E : OrderedAbelianMonoidSup
V : OrderedSet
P : RecursivePolynomialCategory(R,E,V)
N ==> NonNegativeInteger
Z ==> Integer
B ==> Boolean
LP ==> List P
PtoP ==> P -> P
Exports == TriangularSetCategory(R,E,V,P)
Implementation == add
Rep == LP
copy ts ==
per(copy(rep(ts))$LP)
empty() ==
per([])
empty?(ts:$) ==
empty?(rep(ts))
members ts ==
rep(ts)
map (f : PtoP, ts : $) : $ ==
construct(map(f,rep(ts))$LP)$$
map! (f : PtoP, ts : $) : $ ==
construct(map!(f,rep(ts))$LP)$$
member? (p,ts) ==
member?(p,rep(ts))$LP
roughUnitIdeal? ts ==
false
-- the following assume that rep(ts) is decreasingly sorted
-- w.r.t. the main variavles of the polynomials in rep(ts)
coerce(ts:$) : OutputForm ==
lp : List(P) := reverse(rep(ts))
brace([p::OutputForm for p in lp]$List(OutputForm))$OutputForm
mvar ts ==
empty? ts => error"failed in mvar : $ -> V from GTSET"
mvar(first(rep(ts)))$P
first ts ==
empty? ts => "failed"::Union(P,"failed")
first(rep(ts))::Union(P,"failed")
last ts ==
empty? ts => "failed"::Union(P,"failed")
last(rep(ts))::Union(P,"failed")
rest ts ==
empty? ts => "failed"::Union($,"failed")
per(rest(rep(ts)))::Union($,"failed")
coerce(ts:$) : (List P) ==
rep(ts)
collectUpper (ts,v) ==
empty? ts => ts
lp := rep(ts)
newlp : Rep := []
while (not empty? lp) and (mvar(first(lp)) > v) repeat
newlp := cons(first(lp),newlp)
lp := rest lp
per(reverse(newlp))
collectUnder (ts,v) ==
empty? ts => ts
lp := rep(ts)
while (not empty? lp) and (mvar(first(lp)) >= v) repeat
lp := rest lp
per(lp)
-- for another domain of TSETCAT build on this domain GTSET
-- the following operations must be redefined
extendIfCan(ts:$,p:P) ==
ground? p => "failed"::Union($,"failed")
empty? ts => (per([unitCanonical(p)]$LP))::Union($,"failed")
not (mvar(ts) < mvar(p)) => "failed"::Union($,"failed")
(per(cons(p,rep(ts))))::Union($,"failed")
@
\section{package PSETPK PolynomialSetUtilitiesPackage}
<<package PSETPK PolynomialSetUtilitiesPackage>>=
)abbrev package PSETPK PolynomialSetUtilitiesPackage
++ Author: Marc Moreno Maza (marc@nag.co.uk)
++ Date Created: 12/01/1995
++ Date Last Updated: 12/15/1998
++ SPARC Version
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Examples:
++ References:
++ Description:
++ This package provides modest routines for polynomial system solving.
++ The aim of many of the operations of this package is to remove certain
++ factors in some polynomials in order to avoid unnecessary computations
++ in algorithms involving splitting techniques by partial factorization.
++ Version: 3
PolynomialSetUtilitiesPackage (R,E,V,P) : Exports == Implementation where
R : IntegralDomain
E : OrderedAbelianMonoidSup
V : OrderedSet
P : RecursivePolynomialCategory(R,E,V)
N ==> NonNegativeInteger
Z ==> Integer
B ==> Boolean
LP ==> List P
FP ==> Factored P
T ==> GeneralTriangularSet(R,E,V,P)
RRZ ==> Record(factor: P,exponent: Integer)
RBT ==> Record(bas:T,top:LP)
RUL ==> Record(chs:Union(T,"failed"),rfs:LP)
GPS ==> GeneralPolynomialSet(R,E,V,P)
pf ==> MultivariateFactorize(V, E, R, P)
Exports == with
removeRedundantFactors: LP -> LP
++ \axiom{removeRedundantFactors(lp)} returns \axiom{lq} such that if
++ \axiom{lp = [p1,...,pn]} and \axiom{lq = [q1,...,qm]}
++ then the product \axiom{p1*p2*...*pn} vanishes iff the product \axiom{q1*q2*...*qm} vanishes,
++ and the product of degrees of the \axiom{qi} is not greater than
++ the one of the \axiom{pj}, and no polynomial in \axiom{lq}
++ divides another polynomial in \axiom{lq}. In particular,
++ polynomials lying in the base ring \axiom{R} are removed.
++ Moreover, \axiom{lq} is sorted w.r.t \axiom{infRittWu?}.
++ Furthermore, if R is gcd-domain, the polynomials in \axiom{lq} are
++ pairwise without common non trivial factor.
removeRedundantFactors: (P,P) -> LP
++ \axiom{removeRedundantFactors(p,q)} returns the same as
++ \axiom{removeRedundantFactors([p,q])}
removeSquaresIfCan : LP -> LP
++ \axiom{removeSquaresIfCan(lp)} returns
++ \axiom{removeDuplicates [squareFreePart(p)$P for p in lp]}
++ if \axiom{R} is gcd-domain else returns \axiom{lp}.
unprotectedRemoveRedundantFactors: (P,P) -> LP
++ \axiom{unprotectedRemoveRedundantFactors(p,q)} returns the same as
++ \axiom{removeRedundantFactors(p,q)} but does assume that neither
++ \axiom{p} nor \axiom{q} lie in the base ring \axiom{R} and assumes that
++ \axiom{infRittWu?(p,q)} holds. Moreover, if \axiom{R} is gcd-domain,
++ then \axiom{p} and \axiom{q} are assumed to be square free.
removeRedundantFactors: (LP,P) -> LP
++ \axiom{removeRedundantFactors(lp,q)} returns the same as
++ \axiom{removeRedundantFactors(cons(q,lp))} assuming
++ that \axiom{removeRedundantFactors(lp)} returns \axiom{lp}
++ up to replacing some polynomial \axiom{pj} in \axiom{lp}
++ by some some polynomial \axiom{qj} associated to \axiom{pj}.
removeRedundantFactors : (LP,LP) -> LP
++ \axiom{removeRedundantFactors(lp,lq)} returns the same as
++ \axiom{removeRedundantFactors(concat(lp,lq))} assuming
++ that \axiom{removeRedundantFactors(lp)} returns \axiom{lp}
++ up to replacing some polynomial \axiom{pj} in \axiom{lp}
++ by some polynomial \axiom{qj} associated to \axiom{pj}.
removeRedundantFactors : (LP,LP,(LP -> LP)) -> LP
++ \axiom{removeRedundantFactors(lp,lq,remOp)} returns the same as
++ \axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,lq)),lq)}
++ assuming that \axiom{remOp(lq)} returns \axiom{lq} up to similarity.
certainlySubVariety? : (LP,LP) -> B
++ \axiom{certainlySubVariety?(newlp,lp)} returns true iff for every \axiom{p}
++ in \axiom{lp} the remainder of \axiom{p} by \axiom{newlp} using the division algorithm
++ of Groebner techniques is zero.
possiblyNewVariety? : (LP, List LP) -> B
++ \axiom{possiblyNewVariety?(newlp,llp)} returns true iff for every \axiom{lp}
++ in \axiom{llp} certainlySubVariety?(newlp,lp) does not hold.
probablyZeroDim?: LP -> B
++ \axiom{probablyZeroDim?(lp)} returns true iff the number of polynomials
++ in \axiom{lp} is not smaller than the number of variables occurring
++ in these polynomials.
selectPolynomials : ((P -> B),LP) -> Record(goodPols:LP,badPols:LP)
++ \axiom{selectPolynomials(pred?,ps)} returns \axiom{gps,bps} where
++ \axiom{gps} is a list of the polynomial \axiom{p} in \axiom{ps}
++ such that \axiom{pred?(p)} holds and \axiom{bps} are the other ones.
selectOrPolynomials : (List (P -> B),LP) -> Record(goodPols:LP,badPols:LP)
++ \axiom{selectOrPolynomials(lpred?,ps)} returns \axiom{gps,bps} where
++ \axiom{gps} is a list of the polynomial \axiom{p} in \axiom{ps}
++ such that \axiom{pred?(p)} holds for some \axiom{pred?} in \axiom{lpred?}
++ and \axiom{bps} are the other ones.
selectAndPolynomials : (List (P -> B),LP) -> Record(goodPols:LP,badPols:LP)
++ \axiom{selectAndPolynomials(lpred?,ps)} returns \axiom{gps,bps} where
++ \axiom{gps} is a list of the polynomial \axiom{p} in \axiom{ps}
++ such that \axiom{pred?(p)} holds for every \axiom{pred?} in \axiom{lpred?}
++ and \axiom{bps} are the other ones.
quasiMonicPolynomials : LP -> Record(goodPols:LP,badPols:LP)
++ \axiom{quasiMonicPolynomials(lp)} returns \axiom{qmps,nqmps} where
++ \axiom{qmps} is a list of the quasi-monic polynomials in \axiom{lp}
++ and \axiom{nqmps} are the other ones.
univariate? : P -> B
++ \axiom{univariate?(p)} returns true iff \axiom{p} involves one and
++ only one variable.
univariatePolynomials : LP -> Record(goodPols:LP,badPols:LP)
++ \axiom{univariatePolynomials(lp)} returns \axiom{ups,nups} where
++ \axiom{ups} is a list of the univariate polynomials,
++ and \axiom{nups} are the other ones.
linear? : P -> B
++ \axiom{linear?(p)} returns true iff \axiom{p} does not lie
++ in the base ring \axiom{R} and has main degree \axiom{1}.
linearPolynomials : LP -> Record(goodPols:LP,badPols:LP)
++ \axiom{linearPolynomials(lp)} returns \axiom{lps,nlps} where
++ \axiom{lps} is a list of the linear polynomials in lp,
++ and \axiom{nlps} are the other ones.
bivariate? : P -> B
++ \axiom{bivariate?(p)} returns true iff \axiom{p} involves two and
++ only two variables.
bivariatePolynomials : LP -> Record(goodPols:LP,badPols:LP)
++ \axiom{bivariatePolynomials(lp)} returns \axiom{bps,nbps} where
++ \axiom{bps} is a list of the bivariate polynomials,
++ and \axiom{nbps} are the other ones.
removeRoughlyRedundantFactorsInPols : (LP, LP) -> LP
++ \axiom{removeRoughlyRedundantFactorsInPols(lp,lf)} returns
++ \axiom{newlp}where \axiom{newlp} is obtained from \axiom{lp}
++ by removing in every polynomial \axiom{p} of \axiom{lp}
++ any occurence of a polynomial \axiom{f} in \axiom{lf}.
++ This may involve a lot of exact-quotients computations.
removeRoughlyRedundantFactorsInPols : (LP, LP,B) -> LP
++ \axiom{removeRoughlyRedundantFactorsInPols(lp,lf,opt)} returns
++ the same as \axiom{removeRoughlyRedundantFactorsInPols(lp,lf)}
++ if \axiom{opt} is \axiom{false} and if the previous operation
++ does not return any non null and constant polynomial,
++ else return \axiom{[1]}.
removeRoughlyRedundantFactorsInPol : (P,LP) -> P
++ \axiom{removeRoughlyRedundantFactorsInPol(p,lf)} returns the same as
++ removeRoughlyRedundantFactorsInPols([p],lf,true)
interReduce: LP -> LP
++ \axiom{interReduce(lp)} returns \axiom{lq} such that \axiom{lp}
++ and \axiom{lq} generate the same ideal and no polynomial
++ in \axiom{lq} is reducuble by the others in the sense
++ of Groebner bases. Since no assumptions are required
++ the result may depend on the ordering the reductions are
++ performed.
roughBasicSet: LP -> Union(Record(bas:T,top:LP),"failed")
++ \axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu
++ ordering) triangular set contained in \axiom{lp}.
crushedSet: LP -> LP
++ \axiom{crushedSet(lp)} returns \axiom{lq} such that \axiom{lp} and
++ and \axiom{lq} generate the same ideal and no rough basic
++ sets reduce (in the sense of Groebner bases) the other
++ polynomials in \axiom{lq}.
rewriteSetByReducingWithParticularGenerators : (LP,(P->B),((P,P)->B),((P,P)->P)) -> LP
++ \axiom{rewriteSetByReducingWithParticularGenerators(lp,pred?,redOp?,redOp)}
++ returns \axiom{lq} where \axiom{lq} is computed by the following
++ algorithm. Chose a basic set w.r.t. the reduction-test \axiom{redOp?}
++ among the polynomials satisfying property \axiom{pred?},
++ if it is empty then leave, else reduce the other polynomials by
++ this basic set w.r.t. the reduction-operation \axiom{redOp}.
++ Repeat while another basic set with smaller rank can be computed.
++ See code. If \axiom{pred?} is \axiom{quasiMonic?} the ideal is unchanged.
rewriteIdealWithQuasiMonicGenerators : (LP,((P,P)->B),((P,P)->P)) -> LP
++ \axiom{rewriteIdealWithQuasiMonicGenerators(lp,redOp?,redOp)} returns
++ \axiom{lq} where \axiom{lq} and \axiom{lp} generate
++ the same ideal in \axiom{R^(-1) P} and \axiom{lq}
++ has rank not higher than the one of \axiom{lp}.
++ Moreover, \axiom{lq} is computed by reducing \axiom{lp}
++ w.r.t. some basic set of the ideal generated by
++ the quasi-monic polynomials in \axiom{lp}.
if R has GcdDomain
then
squareFreeFactors : P -> LP
++ \axiom{squareFreeFactors(p)} returns the square-free factors of \axiom{p}
++ over \axiom{R}
univariatePolynomialsGcds : LP -> LP
++ \axiom{univariatePolynomialsGcds(lp)} returns \axiom{lg} where
++ \axiom{lg} is a list of the gcds of every pair in \axiom{lp}
++ of univariate polynomials in the same main variable.
univariatePolynomialsGcds : (LP,B) -> LP
++ \axiom{univariatePolynomialsGcds(lp,opt)} returns the same as
++ \axiom{univariatePolynomialsGcds(lp)} if \axiom{opt} is
++ \axiom{false} and if the previous operation does not return
++ any non null and constant polynomial, else return \axiom{[1]}.
removeRoughlyRedundantFactorsInContents : (LP, LP) -> LP
++ \axiom{removeRoughlyRedundantFactorsInContents(lp,lf)} returns
++ \axiom{newlp}where \axiom{newlp} is obtained from \axiom{lp}
++ by removing in the content of every polynomial of \axiom{lp}
++ any occurence of a polynomial \axiom{f} in \axiom{lf}. Moreover,
++ squares over \axiom{R} are first removed in the content
++ of every polynomial of \axiom{lp}.
removeRedundantFactorsInContents : (LP, LP) -> LP
++ \axiom{removeRedundantFactorsInContents(lp,lf)} returns \axiom{newlp}
++ where \axiom{newlp} is obtained from \axiom{lp} by removing
++ in the content of every polynomial of \axiom{lp} any non trivial
++ factor of any polynomial \axiom{f} in \axiom{lf}. Moreover,
++ squares over \axiom{R} are first removed in the content
++ of every polynomial of \axiom{lp}.
removeRedundantFactorsInPols : (LP, LP) -> LP
++ \axiom{removeRedundantFactorsInPols(lp,lf)} returns \axiom{newlp}
++ where \axiom{newlp} is obtained from \axiom{lp} by removing
++ in every polynomial \axiom{p} of \axiom{lp} any non trivial
++ factor of any polynomial \axiom{f} in \axiom{lf}. Moreover,
++ squares over \axiom{R} are first removed in every
++ polynomial \axiom{lp}.
if (R has EuclideanDomain) and (R has CharacteristicZero)
then
irreducibleFactors : LP -> LP
++ \axiom{irreducibleFactors(lp)} returns \axiom{lf} such that if
++ \axiom{lp = [p1,...,pn]} and \axiom{lf = [f1,...,fm]} then
++ \axiom{p1*p2*...*pn=0} means \axiom{f1*f2*...*fm=0}, and the \axiom{fi}
++ are irreducible over \axiom{R} and are pairwise distinct.
lazyIrreducibleFactors : LP -> LP
++ \axiom{lazyIrreducibleFactors(lp)} returns \axiom{lf} such that if
++ \axiom{lp = [p1,...,pn]} and \axiom{lf = [f1,...,fm]} then
++ \axiom{p1*p2*...*pn=0} means \axiom{f1*f2*...*fm=0}, and the \axiom{fi}
++ are irreducible over \axiom{R} and are pairwise distinct.
++ The algorithm tries to avoid factorization into irreducible
++ factors as far as possible and makes previously use of gcd
++ techniques over \axiom{R}.
removeIrreducibleRedundantFactors : (LP, LP) -> LP
++ \axiom{removeIrreducibleRedundantFactors(lp,lq)} returns the same
++ as \axiom{irreducibleFactors(concat(lp,lq))} assuming
++ that \axiom{irreducibleFactors(lp)} returns \axiom{lp}
++ up to replacing some polynomial \axiom{pj} in \axiom{lp}
++ by some polynomial \axiom{qj} associated to \axiom{pj}.
Implementation == add
autoRemainder: T -> List(P)
removeAssociates (lp:LP):LP ==
removeDuplicates [primPartElseUnitCanonical(p) for p in lp]
selectPolynomials (pred?,ps) ==
gps : LP := []
bps : LP := []
while not empty? ps repeat
p := first ps
ps := rest ps
if pred?(p)
then
gps := cons(p,gps)
else
bps := cons(p,bps)
gps := sort(infRittWu?,gps)
bps := sort(infRittWu?,bps)
[gps,bps]
selectOrPolynomials (lpred?,ps) ==
gps : LP := []
bps : LP := []
while not empty? ps repeat
p := first ps
ps := rest ps
clpred? := lpred?
while (not empty? clpred?) and (not (first clpred?)(p)) repeat
clpred? := rest clpred?
if not empty?(clpred?)
then
gps := cons(p,gps)
else
bps := cons(p,bps)
gps := sort(infRittWu?,gps)
bps := sort(infRittWu?,bps)
[gps,bps]
selectAndPolynomials (lpred?,ps) ==
gps : LP := []
bps : LP := []
while not empty? ps repeat
p := first ps
ps := rest ps
clpred? := lpred?
while (not empty? clpred?) and ((first clpred?)(p)) repeat
clpred? := rest clpred?
if empty?(clpred?)
then
gps := cons(p,gps)
else
bps := cons(p,bps)
gps := sort(infRittWu?,gps)
bps := sort(infRittWu?,bps)
[gps,bps]
linear? p ==
ground? p => false
one?(mdeg(p))
linearPolynomials ps ==
selectPolynomials(linear?,ps)
univariate? p ==
ground? p => false
not(ground?(init(p))) => false
tp := tail(p)
ground?(tp) => true
not (mvar(p) = mvar(tp)) => false
univariate?(tp)
univariatePolynomials ps ==
selectPolynomials(univariate?,ps)
bivariate? p ==
ground? p => false
ground? tail(p) => univariate?(init(p))
vp := mvar(p)
vtp := mvar(tail(p))
((ground? init(p)) and (vp = vtp)) => bivariate? tail(p)
((ground? init(p)) and (vp > vtp)) => univariate? tail(p)
not univariate?(init(p)) => false
vip := mvar(init(p))
vip > vtp => false
vip = vtp => univariate? tail(p)
vtp < vp => false
zero? degree(tail(p),vip) => univariate? tail(p)
bivariate? tail(p)
bivariatePolynomials ps ==
selectPolynomials(bivariate?,ps)
quasiMonicPolynomials ps ==
selectPolynomials(quasiMonic?,ps)
removeRoughlyRedundantFactorsInPols (lp,lf,opt) ==
empty? lp => lp
newlp : LP := []
stop : B := false
lp := remove(zero?,lp)
lf := sort(infRittWu?,lf)
test : Union(P,"failed")
while (not empty? lp) and (not stop) repeat
p := first lp
lp := rest lp
copylf := lf
while (not empty? copylf) and (not ground? p) and (not (mvar(p) < mvar(first copylf))) repeat
f := first copylf
copylf := rest copylf
while (((test := p exquo$P f)) case P) repeat
p := test::P
stop := opt and ground?(p)
newlp := cons(unitCanonical(p),newlp)
stop => [1$P]
newlp
removeRoughlyRedundantFactorsInPol(p,lf) ==
zero? p => p
lp : LP := [p]
first removeRoughlyRedundantFactorsInPols (lp,lf,true()$B)
removeRoughlyRedundantFactorsInPols (lp,lf) ==
removeRoughlyRedundantFactorsInPols (lp,lf,false()$B)
possiblyNewVariety?(newlp,llp) ==
while (not empty? llp) and _
(not certainlySubVariety?(newlp,first(llp))) repeat
llp := rest llp
empty? llp
certainlySubVariety?(lp,lq) ==
gs := construct(lp)$GPS
while (not empty? lq) and _
(zero? (remainder(first(lq),gs)$GPS).polnum) repeat
lq := rest lq
empty? lq
probablyZeroDim?(lp: List P) : Boolean ==
m := #lp
lv : List V := variables(first lp)
while not empty? (lp := rest lp) repeat
lv := concat(variables(first lp),lv)
n := #(removeDuplicates lv)
not (n > m)
interReduce(lp: LP): LP ==
ps := lp
rs: List(P) := []
repeat
empty? ps => return rs
ps := sort(supRittWu?, ps)
p := first ps
ps := rest ps
r := remainder(p,[ps]$GPS).polnum
zero? r => "leave"
ground? r => return []
associates?(r,p) => rs := cons(r,rs)
ps := concat(ps,cons(r,rs))
rs := []
roughRed?(p:P,q:P):B ==
ground? p => false
ground? q => true
mvar(p) > mvar(q)
roughBasicSet(lp) == basicSet(lp,roughRed?)$T
autoRemainder(ts:T): List(P) ==
empty? ts => members(ts)
lp := sort(infRittWu?, reverse members(ts))
newlp : List(P) := [primPartElseUnitCanonical first(lp)]
lp := rest(lp)
while not empty? lp repeat
p := (remainder(first(lp),construct(newlp)$GPS)$GPS).polnum
if not zero? p
then
if ground? p
then
newlp := [1$P]
lp := []
else
newlp := cons(p,newlp)
lp := rest(lp)
else
lp := rest(lp)
newlp
crushedSet(lp) ==
rec := roughBasicSet(lp)
contradiction := (rec case "failed")@B
finished : B := false
rs: LP
while (not finished) and (not contradiction) repeat
bs := (rec::RBT).bas
rs := (rec::RBT).top
rs := rewriteIdealWithRemainder(rs,bs)$T
contradiction := ((not empty? rs) and (one? first(rs)))
if not contradiction
then
rs := concat(rs,autoRemainder(bs))
rec := roughBasicSet(rs)
contradiction := (rec case "failed")@B
not contradiction => finished := not infRittWu?((rec::RBT).bas,bs)
contradiction => [1$P]
rs
rewriteSetByReducingWithParticularGenerators (ps,pred?,redOp?,redOp) ==
rs : LP := remove(zero?,ps)
any?(ground?,rs) => [1$P]
contradiction : B := false
bs1 : T := empty()$T
rec : Union(RBT,"failed")
ar : Union(T,List(P))
stop : B := false
while (not contradiction) and (not stop) repeat
rec := basicSet(rs,pred?,redOp?)$T
bs2 : T := (rec::RBT).bas
rs := (rec::RBT).top
-- ar := autoReduce(bs2,lazyPrem,reduced?)@Union(T,List(P))
ar := bs2::Union(T,List(P))
if (ar case T)@B
then
bs2 := ar::T
if infRittWu?(bs2,bs1)
then
rs := rewriteSetWithReduction(rs,bs2,redOp,redOp?)$T
bs1 := bs2
else
stop := true
rs := concat(members(bs2),rs)
else
rs := concat(ar::LP,rs)
if any?(ground?,rs)
then
contradiction := true
rs := [1$P]
rs
removeRedundantFactors (lp:LP,lq :LP, remOp : (LP -> LP)) ==
-- ASSUME remOp(lp) returns lp up to similarity
lq := removeRoughlyRedundantFactorsInPols(lq,lp,false)
lq := remOp lq
sort(infRittWu?,concat(lp,lq))
removeRedundantFactors (lp:LP,lq :LP) ==
lq := removeRoughlyRedundantFactorsInPols(lq,lp,false)
lq := removeRedundantFactors lq
sort(infRittWu?,concat(lp,lq))
if (R has EuclideanDomain) and (R has CharacteristicZero)
then
irreducibleFactors lp ==
newlp : LP := []
lrrz : List RRZ
rrz : RRZ
fp : FP
while not empty? lp repeat
p := first lp
lp := rest lp
fp := factor(p)$pf
lrrz := factors(fp)$FP
lf := remove(ground?,[rrz.factor for rrz in lrrz])
newlp := concat(lf,newlp)
removeDuplicates newlp
lazyIrreducibleFactors lp ==
lp := removeRedundantFactors(lp)
newlp : LP := []
lrrz : List RRZ
rrz : RRZ
fp : FP
while not empty? lp repeat
p := first lp
lp := rest lp
fp := factor(p)$pf
lrrz := factors(fp)$FP
lf := remove(ground?,[rrz.factor for rrz in lrrz])
newlp := concat(lf,newlp)
newlp
removeIrreducibleRedundantFactors (lp:LP,lq :LP) ==
-- ASSUME lp only contains irreducible factors over R
lq := removeRoughlyRedundantFactorsInPols(lq,lp,false)
lq := irreducibleFactors lq
sort(infRittWu?,concat(lp,lq))
if R has GcdDomain
then
squareFreeFactors(p:P) ==
sfp: Factored P := squareFree(p)$P
lsf: List P := [foo.factor for foo in factors(sfp)]
lsf
univariatePolynomialsGcds (ps,opt) ==
lg : LP := []
pInV : LP
stop : B := false
ps := sort(infRittWu?,ps)
p,g : P
v : V
while (not empty? ps) and (not stop) repeat
while (not empty? ps) and (not univariate?((p := first(ps)))) repeat
ps := rest ps
if not empty? ps
then
v := mvar(p)$P
pInV := [p]
while (not empty? ps) and (mvar((p := first(ps))) = v) repeat
if (univariate?(p))
then
pInV := cons(p,pInV)
ps := rest ps
g := gcd(pInV)$P
stop := opt and (ground? g)
lg := cons(g,lg)
stop => [1$P]
lg
univariatePolynomialsGcds ps ==
univariatePolynomialsGcds (ps,false)
removeSquaresIfCan lp ==
empty? lp => lp
removeDuplicates [squareFreePart(p)$P for p in lp]
rewriteIdealWithQuasiMonicGenerators (ps,redOp?,redOp) ==
ups := removeSquaresIfCan(univariatePolynomialsGcds(ps,true))
ps := removeDuplicates concat(ups,ps)
rewriteSetByReducingWithParticularGenerators(ps,quasiMonic?,redOp?,redOp)
removeRoughlyRedundantFactorsInContents (ps,lf) ==
empty? ps => ps
newps : LP := []
p,newp,cp,newcp,f,g : P
test : Union(P,"failed")
copylf : LP
while not empty? ps repeat
p := first ps
ps := rest ps
cp := mainContent(p)$P
newcp := squareFreePart(cp)$P
newp := (p exquo$P cp)::P
if not ground? newcp
then
copylf := [f for f in lf | mvar(f) <= mvar(newcp)]
while (not empty? copylf) and (not ground? newcp) repeat
f := first copylf
copylf := rest copylf
test := (newcp exquo$P f)
if (test case P)@B
then
newcp := test::P
if ground? newcp
then
newp := unitCanonical(newp)
else
newp := unitCanonical(newp * newcp)
newps := cons(newp,newps)
newps
removeRedundantFactorsInContents (ps,lf) ==
empty? ps => ps
newps : LP := []
p,newp,cp,newcp,f,g : P
while not empty? ps repeat
p := first ps
ps := rest ps
cp := mainContent(p)$P
newcp := squareFreePart(cp)$P
newp := (p exquo$P cp)::P
if not ground? newcp
then
copylf := lf
while (not empty? copylf) and (not ground? newcp) repeat
f := first copylf
copylf := rest copylf
g := gcd(newcp,f)$P
if not ground? g
then
newcp := (newcp exquo$P g)::P
if ground? newcp
then
newp := unitCanonical(newp)
else
newp := unitCanonical(newp * newcp)
newps := cons(newp,newps)
newps
removeRedundantFactorsInPols (ps,lf) ==
empty? ps => ps
newps : LP := []
p,newp,cp,newcp,f,g : P
while not empty? ps repeat
p := first ps
ps := rest ps
cp := mainContent(p)$P
newcp := squareFreePart(cp)$P
newp := (p exquo$P cp)::P
newp := squareFreePart(newp)$P
copylf := lf
while not empty? copylf repeat
f := first copylf
copylf := rest copylf
if not ground? newcp
then
g := gcd(newcp,f)$P
if not ground? g
then
newcp := (newcp exquo$P g)::P
if not ground? newp
then
g := gcd(newp,f)$P
if not ground? g
then
newp := (newp exquo$P g)::P
if ground? newcp
then
newp := unitCanonical(newp)
else
newp := unitCanonical(newp * newcp)
newps := cons(newp,newps)
newps
removeRedundantFactors (a:P,b:P) : LP ==
a := primPartElseUnitCanonical(squareFreePart(a))
b := primPartElseUnitCanonical(squareFreePart(b))
if not infRittWu?(a,b)
then
(a,b) := (b,a)
if ground? a
then
if ground? b
then
return([])
else
return([b])
else
if ground? b
then
return([a])
else
return(unprotectedRemoveRedundantFactors(a,b))
unprotectedRemoveRedundantFactors (a,b) ==
c := b exquo$P a
if (c case P)@B
then
d : P := c::P
if ground? d
then
return([a])
else
return([a,d])
else
g : P := gcd(a,b)$P
if ground? g
then
return([a,b])
else
return([g,(a exquo$P g)::P,(b exquo$P g)::P])
else
removeSquaresIfCan lp ==
lp
rewriteIdealWithQuasiMonicGenerators (ps,redOp?,redOp) ==
rewriteSetByReducingWithParticularGenerators(ps,quasiMonic?,redOp?,redOp)
removeRedundantFactors (a:P,b:P) ==
a := primPartElseUnitCanonical(a)
b := primPartElseUnitCanonical(b)
if not infRittWu?(a,b)
then
(a,b) := (b,a)
if ground? a
then
if ground? b
then
return([])
else
return([b])
else
if ground? b
then
return([a])
else
return(unprotectedRemoveRedundantFactors(a,b))
unprotectedRemoveRedundantFactors (a,b) ==
c := b exquo$P a
if (c case P)@B
then
d : P := c::P
if ground? d
then
return([a])
else
if infRittWu?(d,a) then (a,d) := (d,a)
return(unprotectedRemoveRedundantFactors(a,d))
else
return([a,b])
removeRedundantFactors (lp:LP) ==
lp := remove(ground?, lp)
lp := removeDuplicates [primPartElseUnitCanonical(p) for p in lp]
lp := removeSquaresIfCan lp
lp := removeDuplicates [unitCanonical(p) for p in lp]
empty? lp => lp
#lp = 1$N => lp
lp := sort(infRittWu?,lp)
p : P := first lp
lp := rest lp
base : LP := unprotectedRemoveRedundantFactors(p,first lp)
top : LP := rest lp
while not empty? top repeat
p := first top
base := removeRedundantFactors(base,p)
top := rest top
base
removeRedundantFactors (lp:LP,a:P) ==
lp := remove(ground?, lp)
lp := sort(infRittWu?, lp)
ground? a => lp
empty? lp => [a]
toSee : LP := lp
toSave : LP := []
while not empty? toSee repeat
b := first toSee
toSee := rest toSee
(c,d) :=
not infRittWu?(b,a) => (a,b)
(b,a)
rrf := unprotectedRemoveRedundantFactors(c,d)
empty? rrf => error"in removeRedundantFactors : (LP,P) -> LP from PSETPK"
c := first rrf
rrf := rest rrf
if empty? rrf
then
if associates?(c,b)
then
toSave := concat(toSave,toSee)
a := b
toSee := []
else
a := c
toSee := concat(toSave,toSee)
toSave := []
else
d := first rrf
rrf := rest rrf
if empty? rrf
then
if associates?(c,b)
then
toSave := concat(toSave,[b])
a := d
else
if associates?(d,b)
then
toSave := concat(toSave,[b])
a := c
else
toSave := removeRedundantFactors(toSave,c)
a := d
else
e := first rrf
not empty? rest(rrf) => error"in removeRedundantFactors:(LP,P)->LP from PSETPK"
-- ASSUME that neither c, nor d, nor e may be associated to b
toSave := removeRedundantFactors(toSave,c)
toSave := removeRedundantFactors(toSave,d)
a := e
if empty? toSee
then
toSave := sort(infRittWu?,cons(a,toSave))
toSave
@
\section{domain WUTSET WuWenTsunTriangularSet}
<<domain WUTSET WuWenTsunTriangularSet>>=
)abbrev domain WUTSET WuWenTsunTriangularSet
++ Author: Marc Moreno Maza (marc@nag.co.uk)
++ Date Created: 11/18/1995
++ Date Last Updated: 12/15/1998
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Description: A domain constructor of the category \axiomType{GeneralTriangularSet}.
++ The only requirement for a list of polynomials to be a member of such
++ a domain is the following: no polynomial is constant and two distinct
++ polynomials have distinct main variables. Such a triangular set may
++ not be auto-reduced or consistent. The \axiomOpFrom{construct}{WuWenTsunTriangularSet} operation
++ does not check the previous requirement. Triangular sets are stored
++ as sorted lists w.r.t. the main variables of their members.
++ Furthermore, this domain exports operations dealing with the
++ characteristic set method of Wu Wen Tsun and some optimizations
++ mainly proposed by Dong Ming Wang.\newline
++ References :
++ [1] W. T. WU "A Zero Structure Theorem for polynomial equations solving"
++ MM Research Preprints, 1987.
++ [2] D. M. WANG "An implementation of the characteristic set method in Maple"
++ Proc. DISCO'92. Bath, England.
++ Version: 3
WuWenTsunTriangularSet(R,E,V,P) : Exports == Implementation where
R : IntegralDomain
E : OrderedAbelianMonoidSup
V : OrderedSet
P : RecursivePolynomialCategory(R,E,V)
N ==> NonNegativeInteger
Z ==> Integer
B ==> Boolean
LP ==> List P
A ==> FiniteEdge P
H ==> FiniteSimpleHypergraph P
GPS ==> GeneralPolynomialSet(R,E,V,P)
RBT ==> Record(bas:$,top:LP)
RUL ==> Record(chs:Union($,"failed"),rfs:LP)
pa ==> PolynomialSetUtilitiesPackage(R,E,V,P)
NLpT ==> SplittingNode(LP,$)
ALpT ==> SplittingTree(LP,$)
O ==> OutputForm
OP ==> OutputPackage
Exports == TriangularSetCategory(R,E,V,P) with
medialSet : (LP,((P,P)->B),((P,P)->P)) -> Union($,"failed")
++ \axiom{medialSet(ps,redOp?,redOp)} returns \axiom{bs} a basic set
++ (in Wu Wen Tsun sense w.r.t the reduction-test \axiom{redOp?})
++ of some set generating the same ideal as \axiom{ps} (with
++ rank not higher than any basic set of \axiom{ps}), if no non-zero
++ constant polynomials appear during the computatioms, else
++ \axiom{"failed"} is returned. In the former case, \axiom{bs} has to be
++ understood as a candidate for being a characteristic set of \axiom{ps}.
++ In the original algorithm, \axiom{bs} is simply a basic set of \axiom{ps}.
medialSet: LP -> Union($,"failed")
++ \axiom{medial(ps)} returns the same as
++ \axiom{medialSet(ps,initiallyReduced?,initiallyReduce)}.
characteristicSet : (LP,((P,P)->B),((P,P)->P)) -> Union($,"failed")
++ \axiom{characteristicSet(ps,redOp?,redOp)} returns a non-contradictory
++ characteristic set of \axiom{ps} in Wu Wen Tsun sense w.r.t the
++ reduction-test \axiom{redOp?} (using \axiom{redOp} to reduce
++ polynomials w.r.t a \axiom{redOp?} basic set), if no
++ non-zero constant polynomial appear during those reductions,
++ else \axiom{"failed"} is returned.
++ The operations \axiom{redOp} and \axiom{redOp?} must satisfy
++ the following conditions: \axiom{redOp?(redOp(p,q),q)} holds
++ for every polynomials \axiom{p,q} and there exists an integer
++ \axiom{e} and a polynomial \axiom{f} such that we have
++ \axiom{init(q)^e*p = f*q + redOp(p,q)}.
characteristicSet: LP -> Union($,"failed")
++ \axiom{characteristicSet(ps)} returns the same as
++ \axiom{characteristicSet(ps,initiallyReduced?,initiallyReduce)}.
characteristicSerie : (LP,((P,P)->B),((P,P)->P)) -> List $
++ \axiom{characteristicSerie(ps,redOp?,redOp)} returns a list \axiom{lts}
++ of triangular sets such that the zero set of \axiom{ps} is the
++ union of the regular zero sets of the members of \axiom{lts}.
++ This is made by the Ritt and Wu Wen Tsun process applying
++ the operation \axiom{characteristicSet(ps,redOp?,redOp)}
++ to compute characteristic sets in Wu Wen Tsun sense.
characteristicSerie: LP -> List $
++ \axiom{characteristicSerie(ps)} returns the same as
++ \axiom{characteristicSerie(ps,initiallyReduced?,initiallyReduce)}.
Implementation == GeneralTriangularSet(R,E,V,P) add
removeSquares: $ -> Union($,"failed")
Rep == LP
removeAssociates (lp:LP):LP ==
removeDuplicates [primPartElseUnitCanonical(p) for p in lp]
medialSetWithTrace (ps:LP,redOp?:((P,P)->B),redOp:((P,P)->P)):Union(RBT,"failed") ==
qs := rewriteIdealWithQuasiMonicGenerators(ps,redOp?,redOp)$pa
contradiction : B := any?(ground?,ps)
contradiction => "failed"::Union(RBT,"failed")
rs : LP := qs
bs : $
while (not empty? rs) and (not contradiction) repeat
rec := basicSet(rs,redOp?)
contradiction := (rec case "failed")@B
if not contradiction
then
bs := (rec::RBT).bas
rs := (rec::RBT).top
rs := rewriteIdealWithRemainder(rs,bs)
contradiction := ((not empty? rs) and (one? first(rs)))
if (not empty? rs) and (not contradiction)
then
rs := rewriteSetWithReduction(rs,bs,redOp,redOp?)
contradiction := ((not empty? rs) and (one? first(rs)))
if (not empty? rs) and (not contradiction)
then
rs := removeDuplicates concat(rs,members(bs))
rs := rewriteIdealWithQuasiMonicGenerators(rs,redOp?,redOp)$pa
contradiction := ((not empty? rs) and (one? first(rs)))
contradiction => "failed"::Union(RBT,"failed")
([bs,qs]$RBT)::Union(RBT,"failed")
medialSet(ps:LP,redOp?:((P,P)->B),redOp:((P,P)->P)) ==
foo: Union(RBT,"failed") := medialSetWithTrace(ps,redOp?,redOp)
(foo case "failed") => "failed" :: Union($,"failed")
((foo::RBT).bas) :: Union($,"failed")
medialSet(ps:LP) == medialSet(ps,initiallyReduced?,initiallyReduce)
characteristicSetUsingTrace(ps:LP,redOp?:((P,P)->B),redOp:((P,P)->P)):Union($,"failed") ==
ps := removeAssociates ps
ps := remove(zero?,ps)
contradiction : B := any?(ground?,ps)
contradiction => "failed"::Union($,"failed")
rs : LP := ps
qs : LP := ps
ms : $
while (not empty? rs) and (not contradiction) repeat
rec := medialSetWithTrace (qs,redOp?,redOp)
contradiction := (rec case "failed")@B
if not contradiction
then
ms := (rec::RBT).bas
qs := (rec::RBT).top
qs := rewriteIdealWithRemainder(qs,ms)
contradiction := ((not empty? qs) and (one? first(qs)))
if not contradiction
then
rs := rewriteSetWithReduction(qs,ms,lazyPrem,reduced?)
contradiction := ((not empty? rs) and (one? first(rs)))
if (not contradiction) and (not empty? rs)
then
qs := removeDuplicates(concat(rs,concat(members(ms),qs)))
contradiction => "failed"::Union($,"failed")
ms::Union($,"failed")
characteristicSet(ps:LP,redOp?:((P,P)->B),redOp:((P,P)->P)) ==
characteristicSetUsingTrace(ps,redOp?,redOp)
characteristicSet(ps:LP) == characteristicSet(ps,initiallyReduced?,initiallyReduce)
characteristicSerie(ps:LP,redOp?:((P,P)->B),redOp:((P,P)->P)) ==
a := [[ps,empty()$$]$NLpT]$ALpT
while ((esl := extractSplittingLeaf(a)) case ALpT) repeat
ps := value(value(esl::ALpT)$ALpT)$NLpT
charSet? := characteristicSetUsingTrace(ps,redOp?,redOp)
if not (charSet? case $)
then
setvalue!(esl::ALpT,[nil()$LP,empty()$$,true]$NLpT)
updateStatus!(a)
else
cs := (charSet?)::$
lics := initials(cs)
lics := removeRedundantFactors(lics)$pa
lics := sort(infRittWu?,lics)
if empty? lics
then
setvalue!(esl::ALpT,[ps,cs,true]$NLpT)
updateStatus!(a)
else
ln : List NLpT := [[nil()$LP,cs,true]$NLpT]
while not empty? lics repeat
newps := cons(first(lics),concat(cs::LP,ps))
lics := rest lics
newps := removeDuplicates newps
newps := sort(infRittWu?,newps)
ln := cons([newps,empty()$$,false]$NLpT,ln)
splitNodeOf!(esl::ALpT,a,ln)
remove(empty()$$,conditions(a))
characteristicSerie(ps:LP) == characteristicSerie (ps,initiallyReduced?,initiallyReduce)
if R has GcdDomain
then
removeSquares (ts:$):Union($,"failed") ==
empty?(ts)$$ => ts::Union($,"failed")
p := (first ts)::P
rsts : Union($,"failed")
rsts := removeSquares((rest ts)::$)
not(rsts case $) => "failed"::Union($,"failed")
newts := rsts::$
empty? newts =>
p := squareFreePart(p)
(per([primitivePart(p)]$LP))::Union($,"failed")
zero? initiallyReduce(init(p),newts) => "failed"::Union($,"failed")
p := primitivePart(removeZero(p,newts))
ground? p => "failed"::Union($,"failed")
not (mvar(newts) < mvar(p)) => "failed"::Union($,"failed")
p := squareFreePart(p)
(per(cons(unitCanonical(p),rep(newts))))::Union($,"failed")
zeroSetSplit lp ==
lts : List $ := characteristicSerie(lp,initiallyReduced?,initiallyReduce)
lts := removeDuplicates(lts)$(List $)
newlts : List $ := []
while not empty? lts repeat
ts := first lts
lts := rest lts
iic := removeSquares(ts)
if iic case $
then
newlts := cons(iic::$,newlts)
newlts := removeDuplicates(newlts)$(List $)
sort(infRittWu?, newlts)
else
zeroSetSplit lp ==
lts : List $ := characteristicSerie(lp,initiallyReduced?,initiallyReduce)
sort(infRittWu?, removeDuplicates lts)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<category TSETCAT TriangularSetCategory>>
<<domain GTSET GeneralTriangularSet>>
<<package PSETPK PolynomialSetUtilitiesPackage>>
<<domain WUTSET WuWenTsunTriangularSet>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|