1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra solvedio.spad}
\author{Albrecht Fortenbacher}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package DIOSP DiophantineSolutionPackage}
<<package DIOSP DiophantineSolutionPackage>>=
)abbrev package DIOSP DiophantineSolutionPackage
++ Author: A. Fortenbacher
++ Date Created: 29 March 1991
++ Date Last Updated: 29 March 1991
++ Basic Operations: dioSolve
++ Related Constructors: Equation, Vector
++ Also See:
++ AMS Classifications:
++ Keywords: Diophantine equation, nonnegative solutions,
++ basis, depth-first-search
++ Reference:
++ M. Clausen, A. Fortenbacher: Efficient Solution of
++ Linear Diophantine Equations. in JSC (1989) 8, 201-216
++ Description:
++ any solution of a homogeneous linear Diophantine equation
++ can be represented as a sum of minimal solutions, which
++ form a "basis" (a minimal solution cannot be represented
++ as a nontrivial sum of solutions)
++ in the case of an inhomogeneous linear Diophantine equation,
++ each solution is the sum of a inhomogeneous solution and
++ any number of homogeneous solutions
++ therefore, it suffices to compute two sets:
++ 1. all minimal inhomogeneous solutions
++ 2. all minimal homogeneous solutions
++ the algorithm implemented is a completion procedure, which
++ enumerates all solutions in a recursive depth-first-search
++ it can be seen as finding monotone paths in a graph
++ for more details see Reference
DiophantineSolutionPackage(): Cat == Capsule where
B ==> Boolean
I ==> Integer
NI ==> NonNegativeInteger
LI ==> List(I)
VI ==> Vector(I)
VNI ==> Vector(NI)
POLI ==> Polynomial(I)
EPOLI ==> Equation(POLI)
LPOLI ==> List(POLI)
S ==> Symbol
LS ==> List(S)
ListSol ==> List(VNI)
Solutions ==> Record(varOrder: LS, inhom: Union(ListSol,"failed"),
hom: ListSol)
Node ==> Record(vert: VI, free: B)
Graph ==> Record(vn: Vector(Node), dim : NI, zeroNode: I)
Cat ==> with
dioSolve: EPOLI -> Solutions
++ dioSolve(u) computes a basis of all minimal solutions for
++ linear homogeneous Diophantine equation u,
++ then all minimal solutions of inhomogeneous equation
Capsule ==> add
import I
import POLI
-- local function specifications
initializeGraph: (LPOLI, I) -> Graph
createNode: (I, VI, NI, I) -> Node
findSolutions: (VNI, I, I, I, Graph, B) -> ListSol
verifyMinimality: (VNI, Graph, B) -> B
verifySolution: (VNI, I, I, I, Graph) -> B
-- exported functions
dioSolve(eq) ==
p := lhs(eq) - rhs(eq)
n := totalDegree(p)
n = 0 or n > 1 =>
error "a linear Diophantine equation is expected"
mon := empty()$LPOLI
c : I := 0
for x in monomials(p) repeat
ground?(x) =>
c := ground(x) :: I
mon := cons(x, mon)$LPOLI
graph := initializeGraph(mon, c)
sol := zero(graph.dim)$VNI
hs := findSolutions(sol, graph.zeroNode, 1, 1, graph, true)
ihs : ListSol :=
c = 0 => [sol]
findSolutions(sol, graph.zeroNode + c, 1, 1, graph, false)
vars := [first(variables(x))$LS for x in mon]
[vars, if empty?(ihs)$ListSol then "failed" else ihs, hs]
-- local functions
initializeGraph(mon, c) ==
coeffs := vector([first(coefficients(x))$LI for x in mon])$VI
k := #coeffs
m := min(c, reduce(min, coeffs)$VI)
n := max(c, reduce(max, coeffs)$VI)
[[createNode(i, coeffs, k, 1 - m) for i in m..n], k, 1 - m]
createNode(ind, coeffs, k, zeroNode) ==
-- create vertices from node ind to other nodes
v := zero(k)$VI
for i in 1..k repeat
ind > 0 =>
negative? coeffs.i =>
v.i := zeroNode + ind + coeffs.i
coeffs.i > 0 =>
v.i := zeroNode + ind + coeffs.i
[v, true]
findSolutions(sol, ind, m, n, graph, flag) ==
-- return all solutions (paths) from node ind to node zeroNode
sols := empty()$ListSol
node := graph.vn.ind
node.free =>
node.free := false
v := node.vert
k := if ind < graph.zeroNode then m else n
for i in k..graph.dim repeat
x := sol.i
v.i > 0 => -- vertex exists to other node
sol.i := x + 1
v.i = graph.zeroNode => -- solution found
verifyMinimality(sol, graph, flag) =>
sols := cons(copy(sol)$VNI, sols)$ListSol
sol.i := x
sol.i := x
s :=
ind < graph.zeroNode =>
findSolutions(sol, v.i, i, n, graph, flag)
findSolutions(sol, v.i, m, i, graph, flag)
sols := append(s, sols)$ListSol
sol.i := x
node.free := true
sols
sols
verifyMinimality(sol, graph, flag) ==
-- test whether sol contains a minimal homogeneous solution
flag => -- sol is a homogeneous solution
i := 1
while sol.i = 0 repeat
i := i + 1
x := sol.i
sol.i := (x - 1) :: NI
flag := verifySolution(sol, graph.zeroNode, 1, 1, graph)
sol.i := x
flag
verifySolution(sol, graph.zeroNode, 1, 1, graph)
verifySolution(sol, ind, m, n, graph) ==
-- test whether sol contains a path from ind to zeroNode
flag := true
node := graph.vn.ind
v := node.vert
k := if ind < graph.zeroNode then m else n
for i in k..graph.dim while flag repeat
x := sol.i
x > 0 and v.i > 0 => -- vertex exists to other node
sol.i := (x - 1) :: NI
v.i = graph.zeroNode => -- solution found
flag := false
sol.i := x
flag :=
ind < graph.zeroNode =>
verifySolution(sol, v.i, i, n, graph)
verifySolution(sol, v.i, m, i, graph)
sol.i := x
flag
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package DIOSP DiophantineSolutionPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|