1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra sgcf.spad}
\author{Johannes Grabmeier, Thorsten Werther}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package SGCF SymmetricGroupCombinatoricFunctions}
<<package SGCF SymmetricGroupCombinatoricFunctions>>=
)abbrev package SGCF SymmetricGroupCombinatoricFunctions
++ Authors: Johannes Grabmeier, Thorsten Werther
++ Date Created: 03 September 1988
++ Date Last Updated: 07 June 1990
++ Basic Operations: nextPartition, numberOfImproperPartitions,
++ listYoungTableaus, subSet, unrankImproperPartitions0
++ Related Constructors: IntegerCombinatoricFunctions
++ Also See: RepresentationTheoryPackage1, RepresentationTheoryPackage2,
++ IrrRepSymNatPackage
++ AMS Classifications:
++ Keywords: improper partition, partition, subset, Coleman
++ References:
++ G. James/ A. Kerber: The Representation Theory of the Symmetric
++ Group. Encycl. of Math. and its Appl., Vol. 16., Cambridge
++ Univ. Press 1981, ISBN 0-521-30236-6.
++ S.G. Williamson: Combinatorics for Computer Science,
++ Computer Science Press, Rockville, Maryland, USA, ISBN 0-88175-020-4.
++ A. Nijenhuis / H.S. Wilf: Combinatoral Algorithms, Academic Press 1978.
++ ISBN 0-12-519260-6.
++ H. Gollan, J. Grabmeier: Algorithms in Representation Theory and
++ their Realization in the Computer Algebra System Scratchpad,
++ Bayreuther Mathematische Schriften, Heft 33, 1990, 1-23.
++ Description:
++ SymmetricGroupCombinatoricFunctions contains combinatoric
++ functions concerning symmetric groups and representation
++ theory: list young tableaus, improper partitions, subsets
++ bijection of Coleman.
SymmetricGroupCombinatoricFunctions(): public == private where
NNI ==> NonNegativeInteger
I ==> Integer
L ==> List
M ==> Matrix
V ==> Vector
B ==> Boolean
ICF ==> IntegerCombinatoricFunctions Integer
public ==> with
-- IS THERE A WORKING DOMAIN Tableau ??
-- coerce : M I -> Tableau(I)
-- ++ coerce(ytab) coerces the Young-Tableau ytab to an element of
-- ++ the domain Tableau(I).
coleman : (L I, L I, L I) -> M I
++ coleman(alpha,beta,pi):
++ there is a bijection from the set of matrices having nonnegative
++ entries and row sums {\em alpha}, column sums {\em beta}
++ to the set of {\em Salpha - Sbeta} double cosets of the
++ symmetric group {\em Sn}. ({\em Salpha} is the Young subgroup
++ corresponding to the improper partition {\em alpha}).
++ For a representing element {\em pi} of such a double coset,
++ coleman(alpha,beta,pi) generates the Coleman-matrix
++ corresponding to {\em alpha, beta, pi}.
++ Note: The permutation {\em pi} of {\em {1,2,...,n}} has to be given
++ in list form.
++ Note: the inverse of this map is {\em inverseColeman}
++ (if {\em pi} is the lexicographical smallest permutation
++ in the coset). For details see James/Kerber.
inverseColeman : (L I, L I, M I) -> L I
++ inverseColeman(alpha,beta,C):
++ there is a bijection from the set of matrices having nonnegative
++ entries and row sums {\em alpha}, column sums {\em beta}
++ to the set of {\em Salpha - Sbeta} double cosets of the
++ symmetric group {\em Sn}. ({\em Salpha} is the Young subgroup
++ corresponding to the improper partition {\em alpha}).
++ For such a matrix C, inverseColeman(alpha,beta,C)
++ calculates the lexicographical smallest {\em pi} in the
++ corresponding double coset.
++ Note: the resulting permutation {\em pi} of {\em {1,2,...,n}}
++ is given in list form.
++ Notes: the inverse of this map is {\em coleman}.
++ For details, see James/Kerber.
listYoungTableaus : (L I) -> L M I
++ listYoungTableaus(lambda) where {\em lambda} is a proper partition
++ generates the list of all standard tableaus of shape {\em lambda}
++ by means of lattice permutations. The numbers of the lattice
++ permutation are interpreted as column labels. Hence the
++ contents of these lattice permutations are the conjugate of
++ {\em lambda}.
++ Notes: the functions {\em nextLatticePermutation} and
++ {\em makeYoungTableau} are used.
++ The entries are from {\em 0,...,n-1}.
makeYoungTableau : (L I,L I) -> M I
++ makeYoungTableau(lambda,gitter) computes for a given lattice
++ permutation {\em gitter} and for an improper partition {\em lambda}
++ the corresponding standard tableau of shape {\em lambda}.
++ Notes: see {\em listYoungTableaus}.
++ The entries are from {\em 0,...,n-1}.
nextColeman : (L I, L I, M I) -> M I
++ nextColeman(alpha,beta,C) generates the next Coleman matrix
++ of column sums {\em alpha} and row sums {\em beta} according
++ to the lexicographical order from bottom-to-top.
++ The first Coleman matrix is achieved by {\em C=new(1,1,0)}.
++ Also, {\em new(1,1,0)} indicates that C is the last Coleman matrix.
nextLatticePermutation : (L I, L I, B) -> L I
++ nextLatticePermutation(lambda,lattP,constructNotFirst) generates
++ the lattice permutation according to the proper partition
++ {\em lambda} succeeding the lattice permutation {\em lattP} in
++ lexicographical order as long as {\em constructNotFirst} is true.
++ If {\em constructNotFirst} is false, the first lattice permutation
++ is returned.
++ The result {\em nil} indicates that {\em lattP} has no successor.
nextPartition : (V I, V I, I) -> V I
++ nextPartition(gamma,part,number) generates the partition of
++ {\em number} which follows {\em part} according to the right-to-left
++ lexicographical order. The partition has the property that
++ its components do not exceed the corresponding components of
++ {\em gamma}. The first partition is achieved by {\em part=[]}.
++ Also, {\em []} indicates that {\em part} is the last partition.
nextPartition : (L I, V I, I) -> V I
++ nextPartition(gamma,part,number) generates the partition of
++ {\em number} which follows {\em part} according to the right-to-left
++ lexicographical order. The partition has the property that
++ its components do not exceed the corresponding components of
++ {\em gamma}. the first partition is achieved by {\em part=[]}.
++ Also, {\em []} indicates that {\em part} is the last partition.
numberOfImproperPartitions: (I,I) -> I
++ numberOfImproperPartitions(n,m) computes the number of partitions
++ of the nonnegative integer n in m nonnegative parts with regarding
++ the order (improper partitions).
++ Example: {\em numberOfImproperPartitions (3,3)} is 10,
++ since {\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1],
++ [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities.
++ Note: this operation has a recursive implementation.
subSet : (I,I,I) -> L I
++ subSet(n,m,k) calculates the {\em k}-th {\em m}-subset of the set
++ {\em 0,1,...,(n-1)} in the lexicographic order considered as
++ a decreasing map from {\em 0,...,(m-1)} into {\em 0,...,(n-1)}.
++ See S.G. Williamson: Theorem 1.60.
++ Error: if not {\em (0 <= m <= n and 0 < = k < (n choose m))}.
unrankImproperPartitions0 : (I,I,I) -> L I
++ unrankImproperPartitions0(n,m,k) computes the {\em k}-th improper
++ partition of nonnegative n in m nonnegative parts in reverse
++ lexicographical order.
++ Example: {\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] <
++ [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}.
++ Error: if k is negative or too big.
++ Note: counting of subtrees is done by
++ \spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.
unrankImproperPartitions1: (I,I,I) -> L I
++ unrankImproperPartitions1(n,m,k) computes the {\em k}-th improper
++ partition of nonnegative n in at most m nonnegative parts
++ ordered as follows: first, in reverse
++ lexicographically according to their non-zero parts, then
++ according to their positions (i.e. lexicographical order
++ using {\em subSet}: {\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] <
++ [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}).
++ Note: counting of subtrees is done by
++ {\em numberOfImproperPartitionsInternal}.
private == add
import Set I
-- declaration of local functions
numberOfImproperPartitionsInternal: (I,I,I) -> I
-- this is used as subtree counting function in
-- "unrankImproperPartitions1". For (n,m,cm) it counts
-- the following set of m-tuples: The first (from left
-- to right) m-cm non-zero entries are equal, the remaining
-- positions sum up to n. Example: (3,3,2) counts
-- [x,3,0], [x,0,3], [0,x,3], [x,2,1], [x,1,2], x non-zero.
-- definition of local functions
numberOfImproperPartitionsInternal(n,m,cm) ==
n = 0 => binomial(m,cm)$ICF
cm = 0 and n > 0 => 0
s := 0
for i in 0..n-1 repeat
s := s + numberOfImproperPartitionsInternal(i,m,cm-1)
s
-- definition of exported functions
numberOfImproperPartitions(n,m) ==
if n < 0 or m < 1 then return 0
if m = 1 or n = 0 then return 1
s := 0
for i in 0..n repeat
s := s + numberOfImproperPartitions(n-i,m-1)
s
unrankImproperPartitions0(n,m,k) ==
l : L I := nil$(L I)
k < 0 => error"counting of partitions is started at 0"
k >= numberOfImproperPartitions(n,m) =>
error"there are not so many partitions"
for t in 0..(m-2) repeat
s : I := 0
sOld: I
for y in 0..n repeat
sOld := s
s := s + numberOfImproperPartitions(n-y,m-t-1)
if s > k then leave
l := append(l,list(y)$(L I))$(L I)
k := k - sOld
n := n - y
l := append(l,list(n)$(L I))$(L I)
l
unrankImproperPartitions1(n,m,k) ==
-- we use the counting procedure of the leaves in a tree
-- having the following structure: First of all non-zero
-- labels for the sons. If addition along a path gives n,
-- then we go on creating the subtree for (n choose cm)
-- where cm is the length of the path. These subsets determine
-- the positions for the non-zero labels for the partition
-- to be formeded. The remaining positions are filled by zeros.
nonZeros : L I := nil$(L I)
partition : V I := new(m::NNI,0$I)$(V I)
k < 0 => nonZeros
k >= numberOfImproperPartitions(n,m) => nonZeros
cm : I := m --cm gives the depth of the tree
while n ~= 0 repeat
s : I := 0
cm := cm - 1
sOld : I
for y in n..1 by -1 repeat --determination of the next son
sOld := s -- remember old s
-- this functions counts the number of elements in a subtree
s := s + numberOfImproperPartitionsInternal(n-y,m,cm)
if s > k then leave
-- y is the next son, so put it into the pathlist "nonZero"
nonZeros := append(nonZeros,list(y)$(L I))$(L I)
k := k - sOld --updating
n := n - y --updating
--having found all m-cm non-zero entries we change the structure
--of the tree and determine the non-zero positions
nonZeroPos : L I := reverse subSet(m,m-cm,k)
--building the partition
for i in 1..m-cm repeat partition.(1+nonZeroPos.i) := nonZeros.i
entries partition
subSet(n,m,k) ==
k < 0 or n < 0 or m < 0 or m > n =>
error "improper argument to subSet"
bin : I := binomial$ICF (n,m)
k >= bin =>
error "there are not so many subsets"
l : L I := []
n = 0 => l
mm : I := k
s : I := m
for t in 0..(m-1) repeat
for y in (s-1)..(n+1) repeat
if binomial$ICF (y,s) > mm then leave
l := append (l,list(y-1)$(L I))
mm := mm - binomial$ICF (y-1,s)
s := s-1
l
nextLatticePermutation(lambda, lattP, constructNotFirst) ==
lprime : L I := conjugate(lambda)$PartitionsAndPermutations
columns : NNI := (first(lambda)$(L I))::NNI
rows : NNI := (first(lprime)$(L I))::NNI
n : NNI :=(+/lambda)::NNI
not constructNotFirst => -- first lattice permutation
lattP := nil$(L I)
for i in columns..1 by -1 repeat
for l in 1..lprime(i) repeat
lattP := cons(i,lattP)
lattP
help : V I := new(columns,0) -- entry help(i) stores the number
-- of occurences of number i on our way from right to left
rightPosition : NNI := n
leftEntry : NNI := lattP(rightPosition)::NNI
ready : B := false
until (ready or (not constructNotFirst)) repeat
rightEntry : NNI := leftEntry
leftEntry := lattP(rightPosition-1)::NNI
help(rightEntry) := help(rightEntry) + 1
-- search backward decreasing neighbour elements
if rightEntry > leftEntry then
if ((lprime(leftEntry)-help(leftEntry)) >_
(lprime(rightEntry)-help(rightEntry)+1)) then
-- the elements may be swapped because the number of occurances
-- of leftEntry would still be greater than those of rightEntry
ready := true
j : NNI := leftEntry + 1
-- search among the numbers leftEntry+1..rightEntry for the
-- smallest one which can take the place of leftEntry.
-- negation of condition above:
while (help(j)=0) or ((lprime(leftEntry)-lprime(j))
< (help(leftEntry)-help(j)+2)) repeat j := j + 1
lattP(rightPosition-1) := j
help(j) := help(j)-1
help(leftEntry) := help(leftEntry) + 1
-- reconstruct the rest of the list in increasing order
for l in rightPosition..n repeat
j := 0
while help(1+j) = 0 repeat j := j + 1
lattP(l::NNI) := j+1
help(1+j) := help(1+j) - 1
-- end of "if rightEntry > leftEntry"
rightPosition := (rightPosition-1)::NNI
if rightPosition = 1 then constructNotFirst := false
-- end of repeat-loop
not constructNotFirst => nil$(L I)
lattP
makeYoungTableau(lambda,gitter) ==
lprime : L I := conjugate(lambda)$PartitionsAndPermutations
columns : NNI := (first(lambda)$(L I))::NNI
rows : NNI := (first(lprime)$(L I))::NNI
ytab : M I := new(rows,columns,0)
help : V I := new(columns,1)
i : I := -1 -- this makes the entries ranging from 0,..,n-1
-- i := 0 would make it from 1,..,n.
j : I := 0
for l in 1..maxIndex gitter repeat
j := gitter(l)
i := i + 1
ytab(help(j),j) := i
help(j) := help(j) + 1
ytab
-- coerce(ytab) ==
-- lli := listOfLists(ytab)$(M I)
-- -- remove the filling zeros in each row. It is assumed that
-- -- that there are no such in row 0.
-- for i in 2..maxIndex lli repeat
-- THIS IS DEFINIVELY WRONG, I NEED A FUNCTION WHICH DELETES THE
-- 0s, in my version there are no mapping facilities yet.
-- deleteInPlace(not zero?,lli i)
-- tableau(lli)$Tableau(I)
listYoungTableaus(lambda) ==
lattice : L I
ytab : M I
younglist : L M I := nil$(L M I)
lattice := nextLatticePermutation(lambda,lattice,false)
until null lattice repeat
ytab := makeYoungTableau(lambda,lattice)
younglist := append(younglist,[ytab]$(L M I))$(L M I)
lattice := nextLatticePermutation(lambda,lattice,true)
younglist
nextColeman(alpha,beta,C) ==
nrow : NNI := #beta
ncol : NNI := #alpha
vnull : V I := vector(nil()$(L I)) -- empty vector
vzero : V I := new(ncol,0)
vrest : V I := new(ncol,0)
cnull : M I := new(1,1,0)
coleman := copy C
if coleman ~= cnull then
-- look for the first row of "coleman" that has a succeeding
-- partition, this can be atmost row nrow-1
i : NNI := (nrow-1)::NNI
vrest := row(coleman,i) + row(coleman,nrow)
--for k in 1..ncol repeat
-- vrest(k) := coleman(i,k) + coleman(nrow,k)
succ := nextPartition(vrest,row(coleman, i),beta(i))
while (succ = vnull) repeat
if i = 1 then return cnull -- part is last partition
i := (i - 1)::NNI
--for k in 1..ncol repeat
-- vrest(k) := vrest(k) + coleman(i,k)
vrest := vrest + row(coleman,i)
succ := nextPartition(vrest, row(coleman, i), beta(i))
j : I := i
coleman := setRow_!(coleman, i, succ)
--for k in 1..ncol repeat
-- vrest(k) := vrest(k) - coleman(i,k)
vrest := vrest - row(coleman,i)
else
vrest := vector alpha
-- for k in 1..ncol repeat
-- vrest(k) := alpha(k)
coleman := new(nrow,ncol,0)
j : I := 0
for i in (j+1)::NNI..nrow-1 repeat
succ := nextPartition(vrest,vnull,beta(i))
coleman := setRow_!(coleman, i, succ)
vrest := vrest - succ
--for k in 1..ncol repeat
-- vrest(k) := vrest(k) - succ(k)
setRow_!(coleman, nrow, vrest)
nextPartition(gamma:V I, part:V I, number:I) ==
nextPartition(entries gamma, part, number)
nextPartition(gamma:L I,part:V I,number:I) ==
n : NNI := #gamma
vnull : V I := vector(nil()$(L I)) -- empty vector
if part ~= vnull then
i : NNI := 2
sum := part(1)
while (part(i) = gamma(i)) or (sum = 0) repeat
sum := sum + part(i)
i := i + 1
if i = 1+n then return vnull -- part is last partition
sum := sum - 1
part(i) := part(i) + 1
else
sum := number
part := new(n,0)
i := 1+n
j : NNI := 1
while sum > gamma(j) repeat
part(j) := gamma(j)
sum := sum - gamma(j)
j := j + 1
part(j) := sum
for k in j+1..i-1 repeat
part(k) := 0
part
inverseColeman(alpha,beta,C) ==
pi : L I := nil$(L I)
nrow : NNI := #beta
ncol : NNI := #alpha
help : V I := new(nrow,0)
sum : I := 1
for i in 1..nrow repeat
help(i) := sum
sum := sum + beta(i)
for j in 1..ncol repeat
for i in 1..nrow repeat
for k in 2..1+C(i,j) repeat
pi := append(pi,list(help(i))$(L I))
help(i) := help(i) + 1
pi
coleman(alpha,beta,pi) ==
nrow : NNI := #beta
ncol : NNI := #alpha
temp : L L I := nil$(L L I)
help : L I := nil$(L I)
colematrix : M I := new(nrow,ncol,0)
betasum : NNI := 0
alphasum : NNI := 0
for i in 1..ncol repeat
help := nil$(L I)
for j in alpha(i)..1 by-1 repeat
help := cons(pi(j::NNI+alphasum),help)
alphasum := (alphasum + alpha(i))::NNI
temp := append(temp,list(help)$(L L I))
for i in 1..nrow repeat
help := nil$(L I)
for j in beta(i)..1 by-1 repeat
help := cons(j::NNI+betasum, help)
betasum := (betasum + beta(i))::NNI
for j in 1..ncol repeat
colematrix(i,j) := #intersect(brace(help),brace(temp(j)))
colematrix
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package SGCF SymmetricGroupCombinatoricFunctions>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|