1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra regset.spad}
\author{Marc Moreno Maza}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category RSETCAT RegularTriangularSetCategory}
<<category RSETCAT RegularTriangularSetCategory>>=
)abbrev category RSETCAT RegularTriangularSetCategory
++ Author: Marc Moreno Maza
++ Date Created: 09/03/1998
++ Date Last Updated: 12/15/1998
++ Basic Functions:
++ Related Constructors:
++ Also See: essai Graphisme
++ AMS Classifications:
++ Keywords: polynomial, multivariate, ordered variables set
++ Description:
++ The category of regular triangular sets, introduced under
++ the name regular chains in [1] (and other papers).
++ In [3] it is proved that regular triangular sets and towers of simple
++ extensions of a field are equivalent notions.
++ In the following definitions, all polynomials and ideals
++ are taken from the polynomial ring \spad{k[x1,...,xn]} where \spad{k}
++ is the fraction field of \spad{R}.
++ The triangular set \spad{[t1,...,tm]} is regular
++ iff for every \spad{i} the initial of \spad{ti+1} is invertible
++ in the tower of simple extensions associated with \spad{[t1,...,ti]}.
++ A family \spad{[T1,...,Ts]} of regular triangular sets
++ is a split of Kalkbrener of a given ideal \spad{I}
++ iff the radical of \spad{I} is equal to the intersection
++ of the radical ideals generated by the saturated ideals
++ of the \spad{[T1,...,Ti]}.
++ A family \spad{[T1,...,Ts]} of regular triangular sets
++ is a split of Kalkbrener of a given triangular set \spad{T}
++ iff it is a split of Kalkbrener of the saturated ideal of \spad{T}.
++ Let \spad{K} be an algebraic closure of \spad{k}.
++ Assume that \spad{V} is finite with cardinality
++ \spad{n} and let \spad{A} be the affine space \spad{K^n}.
++ For a regular triangular set \spad{T} let denote by \spad{W(T)} the
++ set of regular zeros of \spad{T}.
++ A family \spad{[T1,...,Ts]} of regular triangular sets
++ is a split of Lazard of a given subset \spad{S} of \spad{A}
++ iff the union of the \spad{W(Ti)} contains \spad{S} and
++ is contained in the closure of \spad{S} (w.r.t. Zariski topology).
++ A family \spad{[T1,...,Ts]} of regular triangular sets
++ is a split of Lazard of a given triangular set \spad{T}
++ if it is a split of Lazard of \spad{W(T)}.
++ Note that if \spad{[T1,...,Ts]} is a split of Lazard of
++ \spad{T} then it is also a split of Kalkbrener of \spad{T}.
++ The converse is false.
++ This category provides operations related to both kinds of
++ splits, the former being related to ideals decomposition whereas
++ the latter deals with varieties decomposition.
++ See the example illustrating the \spadtype{RegularTriangularSet} constructor
++ for more explanations about decompositions by means of regular triangular sets. \newline
++ References :
++ [1] M. KALKBRENER "Three contributions to elimination theory"
++ Phd Thesis, University of Linz, Austria, 1991.
++ [2] M. KALKBRENER "Algorithmic properties of polynomial rings"
++ Journal of Symbol. Comp. 1998
++ [3] P. AUBRY, D. LAZARD and M. MORENO MAZA "On the Theories
++ of Triangular Sets" Journal of Symbol. Comp. (to appear)
++ [4] M. MORENO MAZA "A new algorithm for computing triangular
++ decomposition of algebraic varieties" NAG Tech. Rep. 4/98.
++ Version: 2
RegularTriangularSetCategory(R:GcdDomain, E:OrderedAbelianMonoidSup,_
V:OrderedSet,P:RecursivePolynomialCategory(R,E,V)):
Category ==
TriangularSetCategory(R,E,V,P) with
purelyAlgebraic?: (P,$) -> Boolean
++ \spad{purelyAlgebraic?(p,ts)} returns \spad{true} iff every
++ variable of \spad{p} is algebraic w.r.t. \spad{ts}.
purelyTranscendental? : (P,$) -> Boolean
++ \spad{purelyTranscendental?(p,ts)} returns \spad{true} iff every
++ variable of \spad{p} is not algebraic w.r.t. \spad{ts}
algebraicCoefficients? : (P,$) -> Boolean
++ \spad{algebraicCoefficients?(p,ts)} returns \spad{true} iff every
++ variable of \spad{p} which is not the main one of \spad{p}
++ is algebraic w.r.t. \spad{ts}.
purelyAlgebraic?: $ -> Boolean
++ \spad{purelyAlgebraic?(ts)} returns true iff for every algebraic
++ variable \spad{v} of \spad{ts} we have
++ \spad{algebraicCoefficients?(t_v,ts_v_-)} where \spad{ts_v}
++ is \axiomOpFrom{select}{TriangularSetCategory}(ts,v) and \spad{ts_v_-} is
++ \axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,v).
purelyAlgebraicLeadingMonomial?: (P, $) -> Boolean
++ \spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns true iff
++ the main variable of any non-constant iterarted initial
++ of \spad{p} is algebraic w.r.t. \spad{ts}.
invertibleElseSplit? : (P,$) -> Union(Boolean,List $)
++ \spad{invertibleElseSplit?(p,ts)} returns \spad{true} (resp.
++ \spad{false}) if \spad{p} is invertible in the tower
++ associated with \spad{ts} or returns a split of Kalkbrener
++ of \spad{ts}.
invertible? : (P,$) -> List Record(val : Boolean, tower : $)
++ \spad{invertible?(p,ts)} returns \spad{lbwt} where \spad{lbwt.i}
++ is the result of \spad{invertibleElseSplit?(p,lbwt.i.tower)} and
++ the list of the \spad{(lqrwt.i).tower} is a split of Kalkbrener of \spad{ts}.
invertible?: (P,$) -> Boolean
++ \spad{invertible?(p,ts)} returns true iff \spad{p} is invertible
++ in the tower associated with \spad{ts}.
invertibleSet: (P,$) -> List $
++ \spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the
++ quotient ideal of the ideal \axiom{I} by \spad{p} where \spad{I} is
++ the radical of saturated of \spad{ts}.
lastSubResultantElseSplit: (P, P, $) -> Union(P,List $)
++ \spad{lastSubResultantElseSplit(p1,p2,ts)} returns either
++ \spad{g} a quasi-monic gcd of \spad{p1} and \spad{p2} w.r.t.
++ the \spad{ts} or a split of Kalkbrener of \spad{ts}.
++ This assumes that \spad{p1} and \spad{p2} have the same maim
++ variable and that this variable is greater that any variable
++ occurring in \spad{ts}.
lastSubResultant: (P, P, $) -> List Record(val : P, tower : $)
++ \spad{lastSubResultant(p1,p2,ts)} returns \spad{lpwt} such that
++ \spad{lpwt.i.val} is a quasi-monic gcd of \spad{p1} and \spad{p2}
++ w.r.t. \spad{lpwt.i.tower}, for every \spad{i}, and such
++ that the list of the \spad{lpwt.i.tower} is a split of Kalkbrener of
++ \spad{ts}. Moreover, if \spad{p1} and \spad{p2} do not
++ have a non-trivial gcd w.r.t. \spad{lpwt.i.tower} then \spad{lpwt.i.val}
++ is the resultant of these polynomials w.r.t. \spad{lpwt.i.tower}.
++ This assumes that \spad{p1} and \spad{p2} have the same maim
++ variable and that this variable is greater that any variable
++ occurring in \spad{ts}.
squareFreePart: (P,$) -> List Record(val : P, tower : $)
++ \spad{squareFreePart(p,ts)} returns \spad{lpwt} such that
++ \spad{lpwt.i.val} is a square-free polynomial
++ w.r.t. \spad{lpwt.i.tower}, this polynomial being associated with \spad{p}
++ modulo \spad{lpwt.i.tower}, for every \spad{i}. Moreover,
++ the list of the \spad{lpwt.i.tower} is a split
++ of Kalkbrener of \spad{ts}.
++ WARNING: This assumes that \spad{p} is a non-constant polynomial such that
++ if \spad{p} is added to \spad{ts}, then the resulting set is a
++ regular triangular set.
intersect: (P,$) -> List $
++ \spad{intersect(p,ts)} returns the same as
++ \spad{intersect([p],ts)}
intersect: (List P, $) -> List $
++ \spad{intersect(lp,ts)} returns \spad{lts} a split of Lazard
++ of the intersection of the affine variety associated
++ with \spad{lp} and the regular zero set of \spad{ts}.
intersect: (List P, List $) -> List $
++ \spad{intersect(lp,lts)} returns the same as
++ \spad{concat([intersect(lp,ts) for ts in lts])|}
intersect: (P, List $) -> List $
++ \spad{intersect(p,lts)} returns the same as
++ \spad{intersect([p],lts)}
augment: (P,$) -> List $
++ \spad{augment(p,ts)} assumes that \spad{p} is a non-constant
++ polynomial whose main variable is greater than any variable
++ of \spad{ts}. This operation assumes also that if \spad{p} is
++ added to \spad{ts} the resulting set, say \spad{ts+p}, is a
++ regular triangular set. Then it returns a split of Kalkbrener
++ of \spad{ts+p}. This may not be \spad{ts+p} itself, if for
++ instance \spad{ts+p} is required to be square-free.
augment: (P,List $) -> List $
++ \spad{augment(p,lts)} returns the same as
++ \spad{concat([augment(p,ts) for ts in lts])}
augment: (List P,$) -> List $
++ \spad{augment(lp,ts)} returns \spad{ts} if \spad{empty? lp},
++ \spad{augment(p,ts)} if \spad{lp = [p]}, otherwise
++ \spad{augment(first lp, augment(rest lp, ts))}
augment: (List P,List $) -> List $
++ \spad{augment(lp,lts)} returns the same as
++ \spad{concat([augment(lp,ts) for ts in lts])}
internalAugment: (P, $) -> $
++ \spad{internalAugment(p,ts)} assumes that \spad{augment(p,ts)}
++ returns a singleton and returns it.
internalAugment: (List P, $) -> $
++ \spad{internalAugment(lp,ts)} returns \spad{ts} if \spad{lp}
++ is empty otherwise returns
++ \spad{internalAugment(rest lp, internalAugment(first lp, ts))}
extend: (P,$) -> List $
++ \spad{extend(p,ts)} assumes that \spad{p} is a non-constant
++ polynomial whose main variable is greater than any variable
++ of \spad{ts}. Then it returns a split of Kalkbrener
++ of \spad{ts+p}. This may not be \spad{ts+p} itself, if for
++ instance \spad{ts+p} is not a regular triangular set.
extend: (P, List $) -> List $
++ \spad{extend(p,lts)} returns the same as
++ \spad{concat([extend(p,ts) for ts in lts])|}
extend: (List P,$) -> List $
++ \spad{extend(lp,ts)} returns \spad{ts} if \spad{empty? lp}
++ \spad{extend(p,ts)} if \spad{lp = [p]} else
++ \spad{extend(first lp, extend(rest lp, ts))}
extend: (List P,List $) -> List $
++ \spad{extend(lp,lts)} returns the same as
++ \spad{concat([extend(lp,ts) for ts in lts])|}
zeroSetSplit: (List P, Boolean) -> List $
++ \spad{zeroSetSplit(lp,clos?)} returns \spad{lts} a split of Kalkbrener
++ of the radical ideal associated with \spad{lp}.
++ If \spad{clos?} is false, it is also a decomposition of the
++ variety associated with \spad{lp} into the regular zero set of the \spad{ts} in \spad{lts}
++ (or, in other words, a split of Lazard of this variety).
++ See the example illustrating the \spadtype{RegularTriangularSet} constructor
++ for more explanations about decompositions by means of regular triangular sets.
add
NNI ==> NonNegativeInteger
INT ==> Integer
LP ==> List P
PWT ==> Record(val : P, tower : $)
LpWT ==> Record(val : (List P), tower : $)
Split ==> List $
pack ==> PolynomialSetUtilitiesPackage(R,E,V,P)
purelyAlgebraic?(p: P, ts: $): Boolean ==
ground? p => true
not algebraic?(mvar(p),ts) => false
algebraicCoefficients?(p,ts)
purelyTranscendental?(p:P,ts:$): Boolean ==
empty? ts => true
lv : List V := variables(p)$P
while (not empty? lv) and (not algebraic?(first(lv),ts)) repeat lv := rest lv
empty? lv
purelyAlgebraicLeadingMonomial?(p: P, ts: $): Boolean ==
ground? p => true
algebraic?(mvar(p),ts) and purelyAlgebraicLeadingMonomial?(init(p), ts)
algebraicCoefficients?(p:P,ts:$): Boolean ==
ground? p => true
(not ground? init(p)) and not (algebraic?(mvar(init(p)),ts)) => false
algebraicCoefficients?(init(p),ts) =>
ground? tail(p) => true
mvar(tail(p)) = mvar(p) =>
algebraicCoefficients?(tail(p),ts)
algebraic?(mvar(tail(p)),ts) =>
algebraicCoefficients?(tail(p),ts)
false
false
if V has Finite
then
purelyAlgebraic?(ts: $): Boolean ==
empty? ts => true
size()$V = #ts => true
lp: LP := sort(infRittWu?,members(ts))
i: NonNegativeInteger := size()$V
for p in lp repeat
v: V := mvar(p)
(i = (lookup(v)$V)::NNI) =>
i := subtractIfCan(i,1)::NNI
univariate?(p)$pack =>
i := subtractIfCan(i,1)::NNI
not algebraicCoefficients?(p,collectUnder(ts,v)) =>
return false
i := subtractIfCan(i,1)::NNI
true
else
purelyAlgebraic?(ts: $): Boolean ==
empty? ts => true
v: V := mvar(ts)
p: P := select(ts,v)::P
ts := collectUnder(ts,v)
empty? ts => univariate?(p)$pack
not purelyAlgebraic?(ts) => false
algebraicCoefficients?(p,ts)
augment(p:P,lts:List $) ==
toSave: Split := []
while not empty? lts repeat
ts := first lts
lts := rest lts
toSave := concat(augment(p,ts),toSave)
toSave
augment(lp:LP,ts:$) ==
toSave: Split := [ts]
empty? lp => toSave
lp := sort(infRittWu?,lp)
while not empty? lp repeat
p := first lp
lp := rest lp
toSave := augment(p,toSave)
toSave
augment(lp:LP,lts:List $) ==
empty? lp => lts
toSave: Split := []
while not empty? lts repeat
ts := first lts
lts := rest lts
toSave := concat(augment(lp,ts),toSave)
toSave
extend(p:P,lts:List $) ==
toSave : Split := []
while not empty? lts repeat
ts := first lts
lts := rest lts
toSave := concat(extend(p,ts),toSave)
toSave
extend(lp:LP,ts:$) ==
toSave: Split := [ts]
empty? lp => toSave
lp := sort(infRittWu?,lp)
while not empty? lp repeat
p := first lp
lp := rest lp
toSave := extend(p,toSave)
toSave
extend(lp:LP,lts:List $) ==
empty? lp => lts
toSave: Split := []
while not empty? lts repeat
ts := first lts
lts := rest lts
toSave := concat(extend(lp,ts),toSave)
toSave
intersect(lp:LP,lts:List $): List $ ==
-- A VERY GENERAL default algorithm
(empty? lp) or (empty? lts) => lts
lp := [primitivePart(p) for p in lp]
lp := removeDuplicates lp
lp := remove(zero?,lp)
any?(ground?,lp) => []
toSee: List LpWT := [[lp,ts]$LpWT for ts in lts]
toSave: List $ := []
lp: LP
p: P
ts: $
lus: List $
while (not empty? toSee) repeat
lpwt := first toSee; toSee := rest toSee
lp := lpwt.val; ts := lpwt.tower
empty? lp => toSave := cons(ts, toSave)
p := first lp; lp := rest lp
lus := intersect(p,ts)
toSee := concat([[lp,us]$LpWT for us in lus], toSee)
toSave
intersect(lp: LP,ts: $): List $ ==
intersect(lp,[ts])
intersect(p: P,lts: List $): List $ ==
intersect([p],lts)
@
\section{package QCMPACK QuasiComponentPackage}
<<package QCMPACK QuasiComponentPackage>>=
)abbrev package QCMPACK QuasiComponentPackage
++ Author: Marc Moreno Maza
++ marc@nag.co.uk
++ Date Created: 08/30/1998
++ Date Last Updated: 12/16/1998
++ Basic Functions:
++ Related Constructors:
++ Also See: `tosedom.spad'
++ AMS Classifications:
++ Keywords:
++ Description:
++ A package for removing redundant quasi-components and redundant
++ branches when decomposing a variety by means of quasi-components
++ of regular triangular sets. \newline
++ References :
++ [1] D. LAZARD "A new method for solving algebraic systems of
++ positive dimension" Discr. App. Math. 33:147-160,1991
++ [2] M. MORENO MAZA "Calculs de pgcd au-dessus des tours
++ d'extensions simples et resolution des systemes d'equations
++ algebriques" These, Universite P.etM. Curie, Paris, 1997.
++ [3] M. MORENO MAZA "A new algorithm for computing triangular
++ decomposition of algebraic varieties" NAG Tech. Rep. 4/98.
++ Version: 3.
QuasiComponentPackage(R,E,V,P,TS): Exports == Implementation where
R : GcdDomain
E : OrderedAbelianMonoidSup
V : OrderedSet
P : RecursivePolynomialCategory(R,E,V)
TS : RegularTriangularSetCategory(R,E,V,P)
N ==> NonNegativeInteger
Z ==> Integer
B ==> Boolean
S ==> String
LP ==> List P
PtoP ==> P -> P
PS ==> GeneralPolynomialSet(R,E,V,P)
PWT ==> Record(val : P, tower : TS)
BWT ==> Record(val : Boolean, tower : TS)
LpWT ==> Record(val : (List P), tower : TS)
Branch ==> Record(eq: List P, tower: TS, ineq: List P)
UBF ==> Union(Branch,"failed")
Split ==> List TS
Key ==> Record(left:TS, right:TS)
Entry ==> Boolean
H ==> TabulatedComputationPackage(Key, Entry)
polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,P)
Exports == with
startTable!: (S,S,S) -> Void
++ \axiom{startTableGcd!(s1,s2,s3)}
++ is an internal subroutine, exported only for developement.
stopTable!: () -> Void
++ \axiom{stopTableGcd!()}
++ is an internal subroutine, exported only for developement.
supDimElseRittWu?: (TS,TS) -> Boolean
++ \axiom{supDimElseRittWu(ts,us)} returns true iff \axiom{ts}
++ has less elements than \axiom{us} otherwise if \axiom{ts}
++ has higher rank than \axiom{us} w.r.t. Riit and Wu ordering.
algebraicSort: Split -> Split
++ \axiom{algebraicSort(lts)} sorts \axiom{lts} w.r.t
++ \axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.
moreAlgebraic?: (TS,TS) -> Boolean
++ \axiom{moreAlgebraic?(ts,us)} returns false iff \axiom{ts}
++ and \axiom{us} are both empty, or \axiom{ts}
++ has less elements than \axiom{us}, or some variable is
++ algebraic w.r.t. \axiom{us} and is not w.r.t. \axiom{ts}.
subTriSet?: (TS,TS) -> Boolean
++ \axiom{subTriSet?(ts,us)} returns true iff \axiom{ts} is
++ a sub-set of \axiom{us}.
subPolSet?: (LP, LP) -> Boolean
++ \axiom{subPolSet?(lp1,lp2)} returns true iff \axiom{lp1} is
++ a sub-set of \axiom{lp2}.
internalSubPolSet?: (LP, LP) -> Boolean
++ \axiom{internalSubPolSet?(lp1,lp2)} returns true iff \axiom{lp1} is
++ a sub-set of \axiom{lp2} assuming that these lists are sorted
++ increasingly w.r.t. \axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.
internalInfRittWu?: (LP, LP) -> Boolean
++ \axiom{internalInfRittWu?(lp1,lp2)}
++ is an internal subroutine, exported only for developement.
infRittWu?: (LP, LP) -> Boolean
++ \axiom{infRittWu?(lp1,lp2)}
++ is an internal subroutine, exported only for developement.
internalSubQuasiComponent?: (TS,TS) -> Union(Boolean,"failed")
++ \axiom{internalSubQuasiComponent?(ts,us)} returns a boolean \spad{b} value
++ if the fact that the regular zero set of \axiom{us} contains that of
++ \axiom{ts} can be decided (and in that case \axiom{b} gives this
++ inclusion) otherwise returns \axiom{"failed"}.
subQuasiComponent?: (TS,TS) -> Boolean
++ \axiom{subQuasiComponent?(ts,us)} returns true iff
++ \axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage}
++ returs true.
subQuasiComponent?: (TS,Split) -> Boolean
++ \axiom{subQuasiComponent?(ts,lus)} returns true iff
++ \axiom{subQuasiComponent?(ts,us)} holds for one \spad{us} in \spad{lus}.
removeSuperfluousQuasiComponents: Split -> Split
++ \axiom{removeSuperfluousQuasiComponents(lts)} removes from \axiom{lts}
++ any \spad{ts} such that \axiom{subQuasiComponent?(ts,us)} holds for
++ another \spad{us} in \axiom{lts}.
subCase?: (LpWT,LpWT) -> Boolean
++ \axiom{subCase?(lpwt1,lpwt2)}
++ is an internal subroutine, exported only for developement.
removeSuperfluousCases: List LpWT -> List LpWT
++ \axiom{removeSuperfluousCases(llpwt)}
++ is an internal subroutine, exported only for developement.
prepareDecompose: (LP, List(TS),B,B) -> List Branch
++ \axiom{prepareDecompose(lp,lts,b1,b2)}
++ is an internal subroutine, exported only for developement.
branchIfCan: (LP,TS,LP,B,B,B,B,B) -> Union(Branch,"failed")
++ \axiom{branchIfCan(leq,ts,lineq,b1,b2,b3,b4,b5)}
++ is an internal subroutine, exported only for developement.
Implementation == add
squareFreeFactors(lp: LP): LP ==
lsflp: LP := []
for p in lp repeat
lsfp := squareFreeFactors(p)$polsetpack
lsflp := concat(lsfp,lsflp)
sort(infRittWu?,removeDuplicates lsflp)
startTable!(ok: S, ko: S, domainName: S): Void ==
initTable!()$H
if (not empty? ok) and (not empty? ko) then printInfo!(ok,ko)$H
if (not empty? domainName) then startStats!(domainName)$H
void()
stopTable!(): Void ==
if makingStats?()$H then printStats!()$H
clearTable!()$H
supDimElseRittWu? (ts:TS,us:TS): Boolean ==
#ts < #us => true
#ts > #us => false
lp1 :LP := members(ts)
lp2 :LP := members(us)
while (not empty? lp1) and (not infRittWu?(first(lp2),first(lp1))) repeat
lp1 := rest lp1
lp2 := rest lp2
not empty? lp1
algebraicSort (lts:Split): Split ==
lts := removeDuplicates lts
sort(supDimElseRittWu?,lts)
moreAlgebraic?(ts:TS,us:TS): Boolean ==
empty? ts => empty? us
empty? us => true
#ts < #us => false
for p in (members us) repeat
not algebraic?(mvar(p),ts) => return false
true
subTriSet?(ts:TS,us:TS): Boolean ==
empty? ts => true
empty? us => false
mvar(ts) > mvar(us) => false
mvar(ts) < mvar(us) => subTriSet?(ts,rest(us)::TS)
first(ts)::P = first(us)::P => subTriSet?(rest(ts)::TS,rest(us)::TS)
false
internalSubPolSet?(lp1: LP, lp2: LP): Boolean ==
empty? lp1 => true
empty? lp2 => false
associates?(first lp1, first lp2) =>
internalSubPolSet?(rest lp1, rest lp2)
infRittWu?(first lp1, first lp2) => false
internalSubPolSet?(lp1, rest lp2)
subPolSet?(lp1: LP, lp2: LP): Boolean ==
lp1 := sort(infRittWu?, lp1)
lp2 := sort(infRittWu?, lp2)
internalSubPolSet?(lp1,lp2)
infRittWu?(lp1: LP, lp2: LP): Boolean ==
lp1 := sort(infRittWu?, lp1)
lp2 := sort(infRittWu?, lp2)
internalInfRittWu?(lp1,lp2)
internalInfRittWu?(lp1: LP, lp2: LP): Boolean ==
empty? lp1 => not empty? lp2
empty? lp2 => false
infRittWu?(first lp1, first lp2)$P => true
infRittWu?(first lp2, first lp1)$P => false
infRittWu?(rest lp1, rest lp2)$$
subCase? (lpwt1:LpWT,lpwt2:LpWT): Boolean ==
-- ASSUME lpwt.{1,2}.val is sorted w.r.t. infRittWu?
not internalSubPolSet?(lpwt2.val, lpwt1.val) => false
subQuasiComponent?(lpwt1.tower,lpwt2.tower)
internalSubQuasiComponent?(ts:TS,us:TS): Union(Boolean,"failed") ==
-- "failed" is false iff saturate(us) is radical
subTriSet?(us,ts) => true
not moreAlgebraic?(ts,us) => false::Union(Boolean,"failed")
for p in (members us) repeat
mdeg(p) < mdeg(select(ts,mvar(p))::P) =>
return("failed"::Union(Boolean,"failed"))
for p in (members us) repeat
not zero? initiallyReduce(p,ts) =>
return("failed"::Union(Boolean,"failed"))
lsfp := squareFreeFactors(initials us)
for p in lsfp repeat
not invertible?(p,ts)@B =>
return(false::Union(Boolean,"failed"))
true::Union(Boolean,"failed")
subQuasiComponent?(ts:TS,us:TS): Boolean ==
k: Key := [ts, us]
e := extractIfCan(k)$H
e case Entry => e::Entry
ubf: Union(Boolean,"failed") := internalSubQuasiComponent?(ts,us)
b: Boolean := (ubf case Boolean) and (ubf::Boolean)
insert!(k,b)$H
b
subQuasiComponent?(ts:TS,lus:Split): Boolean ==
for us in lus repeat
subQuasiComponent?(ts,us)@B => return true
false
removeSuperfluousCases (cases:List LpWT) ==
#cases < 2 => cases
toSee := sort(supDimElseRittWu?(#1.tower,#2.tower),cases)
lpwt1,lpwt2 : LpWT
toSave,headmaxcases,maxcases,copymaxcases : List LpWT
while not empty? toSee repeat
lpwt1 := first toSee
toSee := rest toSee
toSave := []
for lpwt2 in toSee repeat
if subCase?(lpwt1,lpwt2)
then
lpwt1 := lpwt2
else
if not subCase?(lpwt2,lpwt1)
then
toSave := cons(lpwt2,toSave)
if empty? maxcases
then
headmaxcases := [lpwt1]
maxcases := headmaxcases
else
copymaxcases := maxcases
while (not empty? copymaxcases) and _
(not subCase?(lpwt1,first(copymaxcases))) repeat
copymaxcases := rest copymaxcases
if empty? copymaxcases
then
setrest!(headmaxcases,[lpwt1])
headmaxcases := rest headmaxcases
toSee := reverse toSave
maxcases
removeSuperfluousQuasiComponents(lts: Split): Split ==
lts := removeDuplicates lts
#lts < 2 => lts
toSee := algebraicSort lts
toSave,headmaxlts,maxlts,copymaxlts : Split
while not empty? toSee repeat
ts := first toSee
toSee := rest toSee
toSave := []
for us in toSee repeat
if subQuasiComponent?(ts,us)@B
then
ts := us
else
if not subQuasiComponent?(us,ts)@B
then
toSave := cons(us,toSave)
if empty? maxlts
then
headmaxlts := [ts]
maxlts := headmaxlts
else
copymaxlts := maxlts
while (not empty? copymaxlts) and _
(not subQuasiComponent?(ts,first(copymaxlts))@B) repeat
copymaxlts := rest copymaxlts
if empty? copymaxlts
then
setrest!(headmaxlts,[ts])
headmaxlts := rest headmaxlts
toSee := reverse toSave
algebraicSort maxlts
removeAssociates (lp:LP):LP ==
removeDuplicates [primitivePart(p) for p in lp]
branchIfCan(leq: LP,ts: TS,lineq: LP, b1:B,b2:B,b3:B,b4:B,b5:B):UBF ==
-- ASSUME pols in leq are squarefree and mainly primitive
-- if b1 then CLEAN UP leq
-- if b2 then CLEAN UP lineq
-- if b3 then SEARCH for ZERO in lineq with leq
-- if b4 then SEARCH for ZERO in lineq with ts
-- if b5 then SEARCH for ONE in leq with lineq
if b1
then
leq := removeAssociates(leq)
leq := remove(zero?,leq)
any?(ground?,leq) =>
return("failed"::Union(Branch,"failed"))
if b2
then
any?(zero?,lineq) =>
return("failed"::Union(Branch,"failed"))
lineq := removeRedundantFactors(lineq)$polsetpack
if b3
then
ps: PS := construct(leq)$PS
for q in lineq repeat
zero? remainder(q,ps).polnum =>
return("failed"::Union(Branch,"failed"))
(empty? leq) or (empty? lineq) => ([leq, ts, lineq]$Branch)::UBF
if b4
then
for q in lineq repeat
zero? initiallyReduce(q,ts) =>
return("failed"::Union(Branch,"failed"))
if b5
then
newleq: LP := []
for p in leq repeat
for q in lineq repeat
if mvar(p) = mvar(q)
then
g := gcd(p,q)
newp := (p exquo g)::P
ground? newp =>
return("failed"::Union(Branch,"failed"))
newleq := cons(newp,newleq)
else
newleq := cons(p,newleq)
leq := newleq
leq := sort(infRittWu?, removeDuplicates leq)
([leq, ts, lineq]$Branch)::UBF
prepareDecompose(lp: LP, lts: List(TS), b1: B, b2: B): List Branch ==
-- if b1 then REMOVE REDUNDANT COMPONENTS in lts
-- if b2 then SPLIT the input system with squareFree
lp := sort(infRittWu?, remove(zero?,removeAssociates(lp)))
any?(ground?,lp) => []
empty? lts => []
if b1 then lts := removeSuperfluousQuasiComponents lts
not b2 =>
[[lp,ts,squareFreeFactors(initials ts)]$Branch for ts in lts]
toSee: List Branch
lq: LP := []
toSee := [[lq,ts,squareFreeFactors(initials ts)]$Branch for ts in lts]
empty? lp => toSee
for p in lp repeat
lsfp := squareFreeFactors(p)$polsetpack
branches: List Branch := []
lq := []
for f in lsfp repeat
for branch in toSee repeat
leq : LP := branch.eq
ts := branch.tower
lineq : LP := branch.ineq
ubf1: UBF := branchIfCan(leq,ts,lq,false,false,true,true,true)@UBF
ubf1 case "failed" => "leave"
ubf2: UBF := branchIfCan([f],ts,lineq,false,false,true,true,true)@UBF
ubf2 case "failed" => "leave"
leq := sort(infRittWu?,removeDuplicates concat(ubf1.eq,ubf2.eq))
lineq := sort(infRittWu?,removeDuplicates concat(ubf1.ineq,ubf2.ineq))
newBranch := branchIfCan(leq,ts,lineq,false,false,false,false,false)
branches:= cons(newBranch::Branch,branches)
lq := cons(f,lq)
toSee := branches
sort(supDimElseRittWu?(#1.tower,#2.tower),toSee)
@
\section{package RSETGCD RegularTriangularSetGcdPackage}
<<package RSETGCD RegularTriangularSetGcdPackage>>=
)abbrev package RSETGCD RegularTriangularSetGcdPackage
++ Author: Marc Moreno Maza (marc@nag.co.uk)
++ Date Created: 08/30/1998
++ Date Last Updated: 12/15/1998
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Description:
++ An internal package for computing gcds and resultants of univariate
++ polynomials with coefficients in a tower of simple extensions of a field.\newline
++ References :
++ [1] M. MORENO MAZA and R. RIOBOO "Computations of gcd over
++ algebraic towers of simple extensions" In proceedings of AAECC11
++ Paris, 1995.
++ [2] M. MORENO MAZA "Calculs de pgcd au-dessus des tours
++ d'extensions simples et resolution des systemes d'equations
++ algebriques" These, Universite P.etM. Curie, Paris, 1997.
++ [3] M. MORENO MAZA "A new algorithm for computing triangular
++ decomposition of algebraic varieties" NAG Tech. Rep. 4/98.
++ Version: 4.
RegularTriangularSetGcdPackage(R,E,V,P,TS): Exports == Implementation where
R : GcdDomain
E : OrderedAbelianMonoidSup
V : OrderedSet
P : RecursivePolynomialCategory(R,E,V)
TS : RegularTriangularSetCategory(R,E,V,P)
N ==> NonNegativeInteger
Z ==> Integer
B ==> Boolean
S ==> String
LP ==> List P
PtoP ==> P -> P
PS ==> GeneralPolynomialSet(R,E,V,P)
PWT ==> Record(val : P, tower : TS)
BWT ==> Record(val : Boolean, tower : TS)
LpWT ==> Record(val : (List P), tower : TS)
Branch ==> Record(eq: List P, tower: TS, ineq: List P)
UBF ==> Union(Branch,"failed")
Split ==> List TS
KeyGcd ==> Record(arg1: P, arg2: P, arg3: TS, arg4: B)
EntryGcd ==> List PWT
HGcd ==> TabulatedComputationPackage(KeyGcd, EntryGcd)
KeyInvSet ==> Record(arg1: P, arg3: TS)
EntryInvSet ==> List TS
HInvSet ==> TabulatedComputationPackage(KeyInvSet, EntryInvSet)
polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,P)
quasicomppack ==> QuasiComponentPackage(R,E,V,P,TS)
Exports == with
startTableGcd!: (S,S,S) -> Void
++ \axiom{startTableGcd!(s1,s2,s3)}
++ is an internal subroutine, exported only for developement.
stopTableGcd!: () -> Void
++ \axiom{stopTableGcd!()}
++ is an internal subroutine, exported only for developement.
startTableInvSet!: (S,S,S) -> Void
++ \axiom{startTableInvSet!(s1,s2,s3)}
++ is an internal subroutine, exported only for developement.
stopTableInvSet!: () -> Void
++ \axiom{stopTableInvSet!()} is an internal subroutine,
++ exported only for developement.
prepareSubResAlgo: (P,P,TS) -> List LpWT
++ \axiom{prepareSubResAlgo(p1,p2,ts)}
++ is an internal subroutine, exported only for developement.
internalLastSubResultant: (P,P,TS,B,B) -> List PWT
++ \axiom{internalLastSubResultant(p1,p2,ts,inv?,break?)}
++ is an internal subroutine, exported only for developement.
internalLastSubResultant: (List LpWT,V,B) -> List PWT
++ \axiom{internalLastSubResultant(lpwt,v,flag)} is an internal
++ subroutine, exported only for developement.
integralLastSubResultant: (P,P,TS) -> List PWT
++ \axiom{integralLastSubResultant(p1,p2,ts)}
++ is an internal subroutine, exported only for developement.
toseLastSubResultant: (P,P,TS) -> List PWT
++ \axiom{toseLastSubResultant(p1,p2,ts)} has the same specifications as
++ \axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.
toseInvertible?: (P,TS) -> B
++ \axiom{toseInvertible?(p1,p2,ts)} has the same specifications as
++ \axiomOpFrom{invertible?}{RegularTriangularSetCategory}.
toseInvertible?: (P,TS) -> List BWT
++ \axiom{toseInvertible?(p1,p2,ts)} has the same specifications as
++ \axiomOpFrom{invertible?}{RegularTriangularSetCategory}.
toseInvertibleSet: (P,TS) -> Split
++ \axiom{toseInvertibleSet(p1,p2,ts)} has the same specifications as
++ \axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.
toseSquareFreePart: (P,TS) -> List PWT
++ \axiom{toseSquareFreePart(p,ts)} has the same specifications as
++ \axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.
Implementation == add
startTableGcd!(ok: S, ko: S, domainName: S): Void ==
initTable!()$HGcd
printInfo!(ok,ko)$HGcd
startStats!(domainName)$HGcd
void()
stopTableGcd!(): Void ==
if makingStats?()$HGcd then printStats!()$HGcd
clearTable!()$HGcd
startTableInvSet!(ok: S, ko: S, domainName: S): Void ==
initTable!()$HInvSet
printInfo!(ok,ko)$HInvSet
startStats!(domainName)$HInvSet
void()
stopTableInvSet!(): Void ==
if makingStats?()$HInvSet then printStats!()$HInvSet
clearTable!()$HInvSet
toseInvertible?(p:P,ts:TS): Boolean ==
q := primitivePart initiallyReduce(p,ts)
zero? q => false
normalized?(q,ts) => true
v := mvar(q)
not algebraic?(v,ts) =>
toCheck: List BWT := toseInvertible?(p,ts)@(List BWT)
for bwt in toCheck repeat
bwt.val = false => return false
return true
ts_v := select(ts,v)::P
ts_v_- := collectUnder(ts,v)
lgwt := internalLastSubResultant(ts_v,q,ts_v_-,false,true)
for gwt in lgwt repeat
g := gwt.val;
(not ground? g) and (mvar(g) = v) =>
return false
true
toseInvertible?(p:P,ts:TS): List BWT ==
q := primitivePart initiallyReduce(p,ts)
zero? q => [[false,ts]$BWT]
normalized?(q,ts) => [[true,ts]$BWT]
v := mvar(q)
not algebraic?(v,ts) =>
lbwt: List BWT := []
toCheck: List BWT := toseInvertible?(init(q),ts)@(List BWT)
for bwt in toCheck repeat
bwt.val => lbwt := cons(bwt,lbwt)
newq := removeZero(q,bwt.tower)
zero? newq => lbwt := cons(bwt,lbwt)
lbwt := concat(toseInvertible?(newq,bwt.tower)@(List BWT), lbwt)
return lbwt
ts_v := select(ts,v)::P
ts_v_- := collectUnder(ts,v)
ts_v_+ := collectUpper(ts,v)
lgwt := internalLastSubResultant(ts_v,q,ts_v_-,false,false)
lbwt: List BWT := []
for gwt in lgwt repeat
g := gwt.val; ts := gwt.tower
(ground? g) or (mvar(g) < v) =>
ts := internalAugment(ts_v,ts)
ts := internalAugment(members(ts_v_+),ts)
lbwt := cons([true, ts]$BWT,lbwt)
g := mainPrimitivePart g
ts_g := internalAugment(g,ts)
ts_g := internalAugment(members(ts_v_+),ts_g)
-- USE internalAugment with parameters ??
lbwt := cons([false, ts_g]$BWT,lbwt)
h := lazyPquo(ts_v,g)
(ground? h) or (mvar(h) < v) => "leave"
h := mainPrimitivePart h
ts_h := internalAugment(h,ts)
ts_h := internalAugment(members(ts_v_+),ts_h)
-- USE internalAugment with parameters ??
-- CAN BE OPTIMIZED if the input tower is separable
inv := toseInvertible?(q,ts_h)@(List BWT)
lbwt := concat([bwt for bwt in inv | bwt.val],lbwt)
sort(#1.val < #2.val,lbwt)
toseInvertibleSet(p:P,ts:TS): Split ==
k: KeyInvSet := [p,ts]
e := extractIfCan(k)$HInvSet
e case EntryInvSet => e::EntryInvSet
q := primitivePart initiallyReduce(p,ts)
zero? q => []
normalized?(q,ts) => [ts]
v := mvar(q)
toSave: Split := []
not algebraic?(v,ts) =>
toCheck: List BWT := toseInvertible?(init(q),ts)@(List BWT)
for bwt in toCheck repeat
bwt.val => toSave := cons(bwt.tower,toSave)
newq := removeZero(q,bwt.tower)
zero? newq => "leave"
toSave := concat(toseInvertibleSet(newq,bwt.tower), toSave)
toSave := removeDuplicates toSave
return algebraicSort(toSave)$quasicomppack
ts_v := select(ts,v)::P
ts_v_- := collectUnder(ts,v)
ts_v_+ := collectUpper(ts,v)
lgwt := internalLastSubResultant(ts_v,q,ts_v_-,false,false)
for gwt in lgwt repeat
g := gwt.val; ts := gwt.tower
(ground? g) or (mvar(g) < v) =>
ts := internalAugment(ts_v,ts)
ts := internalAugment(members(ts_v_+),ts)
toSave := cons(ts,toSave)
g := mainPrimitivePart g
h := lazyPquo(ts_v,g)
h := mainPrimitivePart h
(ground? h) or (mvar(h) < v) => "leave"
ts_h := internalAugment(h,ts)
ts_h := internalAugment(members(ts_v_+),ts_h)
inv := toseInvertibleSet(q,ts_h)
toSave := removeDuplicates concat(inv,toSave)
toSave := algebraicSort(toSave)$quasicomppack
insert!(k,toSave)$HInvSet
toSave
toseSquareFreePart_wip(p:P, ts: TS): List PWT ==
-- ASSUME p is not constant and mvar(p) > mvar(ts)
-- ASSUME init(p) is invertible w.r.t. ts
-- ASSUME p is mainly primitive
one? mdeg(p) => [[p,ts]$PWT]
v := mvar(p)$P
q: P := mainPrimitivePart D(p,v)
lgwt: List PWT := internalLastSubResultant(p,q,ts,true,false)
lpwt : List PWT := []
sfp : P
for gwt in lgwt repeat
g := gwt.val; us := gwt.tower
(ground? g) or (mvar(g) < v) =>
lpwt := cons([p,us],lpwt)
g := mainPrimitivePart g
sfp := lazyPquo(p,g)
sfp := mainPrimitivePart stronglyReduce(sfp,us)
lpwt := cons([sfp,us],lpwt)
lpwt
toseSquareFreePart_base(p:P, ts: TS): List PWT == [[p,ts]$PWT]
toseSquareFreePart(p:P, ts: TS): List PWT == toseSquareFreePart_wip(p,ts)
prepareSubResAlgo(p1:P,p2:P,ts:TS): List LpWT ==
-- ASSUME mvar(p1) = mvar(p2) > mvar(ts) and mdeg(p1) >= mdeg(p2)
-- ASSUME init(p1) invertible modulo ts !!!
toSee: List LpWT := [[[p1,p2],ts]$LpWT]
toSave: List LpWT := []
v := mvar(p1)
while (not empty? toSee) repeat
lpwt := first toSee; toSee := rest toSee
p1 := lpwt.val.1; p2 := lpwt.val.2
ts := lpwt.tower
lbwt := toseInvertible?(leadingCoefficient(p2,v),ts)@(List BWT)
for bwt in lbwt repeat
(bwt.val = true) and (degree(p2,v) > 0) =>
p3 := prem(p1, -p2)
s: P := init(p2)**(mdeg(p1) - mdeg(p2))::N
toSave := cons([[p2,p3,s],bwt.tower]$LpWT,toSave)
-- p2 := initiallyReduce(p2,bwt.tower)
newp2 := primitivePart initiallyReduce(p2,bwt.tower)
(bwt.val = true) =>
-- toSave := cons([[p2,0,1],bwt.tower]$LpWT,toSave)
toSave := cons([[p2,0,1],bwt.tower]$LpWT,toSave)
-- zero? p2 =>
zero? newp2 =>
toSave := cons([[p1,0,1],bwt.tower]$LpWT,toSave)
-- toSee := cons([[p1,p2],ts]$LpWT,toSee)
toSee := cons([[p1,newp2],bwt.tower]$LpWT,toSee)
toSave
integralLastSubResultant(p1:P,p2:P,ts:TS): List PWT ==
-- ASSUME mvar(p1) = mvar(p2) > mvar(ts) and mdeg(p1) >= mdeg(p2)
-- ASSUME p1 and p2 have no algebraic coefficients
lsr := lastSubResultant(p1, p2)
ground?(lsr) => [[lsr,ts]$PWT]
mvar(lsr) < mvar(p1) => [[lsr,ts]$PWT]
gi1i2 := gcd(init(p1),init(p2))
ex: Union(P,"failed") := (gi1i2 * lsr) exquo$P init(lsr)
ex case "failed" => [[lsr,ts]$PWT]
[[ex::P,ts]$PWT]
internalLastSubResultant(p1:P,p2:P,ts:TS,b1:B,b2:B): List PWT ==
-- ASSUME mvar(p1) = mvar(p2) > mvar(ts) and mdeg(p1) >= mdeg(p2)
-- if b1 ASSUME init(p2) invertible w.r.t. ts
-- if b2 BREAK with the first non-trivial gcd
k: KeyGcd := [p1,p2,ts,b2]
e := extractIfCan(k)$HGcd
e case EntryGcd => e::EntryGcd
toSave: List PWT
empty? ts =>
toSave := integralLastSubResultant(p1,p2,ts)
insert!(k,toSave)$HGcd
return toSave
toSee: List LpWT
if b1
then
p3 := prem(p1, -p2)
s: P := init(p2)**(mdeg(p1) - mdeg(p2))::N
toSee := [[[p2,p3,s],ts]$LpWT]
else
toSee := prepareSubResAlgo(p1,p2,ts)
toSave := internalLastSubResultant(toSee,mvar(p1),b2)
insert!(k,toSave)$HGcd
toSave
internalLastSubResultant(llpwt: List LpWT,v:V,b2:B): List PWT ==
toReturn: List PWT := []; toSee: List LpWT;
while (not empty? llpwt) repeat
toSee := llpwt; llpwt := []
-- CONSIDER FIRST the vanishing current last subresultant
for lpwt in toSee repeat
p1 := lpwt.val.1; p2 := lpwt.val.2; s := lpwt.val.3; ts := lpwt.tower
lbwt := toseInvertible?(leadingCoefficient(p2,v),ts)@(List BWT)
for bwt in lbwt repeat
bwt.val = false =>
toReturn := cons([p1,bwt.tower]$PWT, toReturn)
b2 and positive?(degree(p1,v)) => return toReturn
llpwt := cons([[p1,p2,s],bwt.tower]$LpWT, llpwt)
empty? llpwt => "leave"
-- CONSIDER NOW the branches where the computations continue
toSee := llpwt; llpwt := []
lpwt := first toSee; toSee := rest toSee
p1 := lpwt.val.1; p2 := lpwt.val.2; s := lpwt.val.3
delta: N := (mdeg(p1) - degree(p2,v))::N
p3: P := LazardQuotient2(p2, leadingCoefficient(p2,v), s, delta)
zero?(degree(p3,v)) =>
toReturn := cons([p3,lpwt.tower]$PWT, toReturn)
for lpwt in toSee repeat
toReturn := cons([p3,lpwt.tower]$PWT, toReturn)
(p1, p2) := (p3, next_subResultant2(p1, p2, p3, s))
s := leadingCoefficient(p1,v)
llpwt := cons([[p1,p2,s],lpwt.tower]$LpWT, llpwt)
for lpwt in toSee repeat
llpwt := cons([[p1,p2,s],lpwt.tower]$LpWT, llpwt)
toReturn
toseLastSubResultant(p1:P,p2:P,ts:TS): List PWT ==
ground? p1 =>
error"in toseLastSubResultantElseSplit$TOSEGCD : bad #1"
ground? p2 =>
error"in toseLastSubResultantElseSplit$TOSEGCD : bad #2"
not (mvar(p2) = mvar(p1)) =>
error"in toseLastSubResultantElseSplit$TOSEGCD : bad #2"
algebraic?(mvar(p1),ts) =>
error"in toseLastSubResultantElseSplit$TOSEGCD : bad #1"
not initiallyReduced?(p1,ts) =>
error"in toseLastSubResultantElseSplit$TOSEGCD : bad #1"
not initiallyReduced?(p2,ts) =>
error"in toseLastSubResultantElseSplit$TOSEGCD : bad #2"
purelyTranscendental?(p1,ts) and purelyTranscendental?(p2,ts) =>
integralLastSubResultant(p1,p2,ts)
if mdeg(p1) < mdeg(p2) then
(p1, p2) := (p2, p1)
if odd?(mdeg(p1)) and odd?(mdeg(p2)) then p2 := - p2
internalLastSubResultant(p1,p2,ts,false,false)
@
\section{package RSDCMPK RegularSetDecompositionPackage}
<<package RSDCMPK RegularSetDecompositionPackage>>=
)abbrev package RSDCMPK RegularSetDecompositionPackage
++ Author: Marc Moreno Maza
++ Date Created: 09/16/1998
++ Date Last Updated: 12/16/1998
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Description:
++ A package providing a new algorithm for solving polynomial systems
++ by means of regular chains. Two ways of solving are proposed:
++ in the sense of Zariski closure (like in Kalkbrener's algorithm)
++ or in the sense of the regular zeros (like in Wu, Wang or Lazard
++ methods). This algorithm is valid for nay type
++ of regular set. It does not care about the way a polynomial is
++ added in an regular set, or how two quasi-components are compared
++ (by an inclusion-test), or how the invertibility test is made in
++ the tower of simple extensions associated with a regular set.
++ These operations are realized respectively by the domain \spad{TS}
++ and the packages \axiomType{QCMPACK}(R,E,V,P,TS) and \axiomType{RSETGCD}(R,E,V,P,TS).
++ The same way it does not care about the way univariate polynomial
++ gcd (with coefficients in the tower of simple extensions associated
++ with a regular set) are computed. The only requirement is that these
++ gcd need to have invertible initials (normalized or not).
++ WARNING. There is no need for a user to call diectly any operation
++ of this package since they can be accessed by the domain \axiom{TS}.
++ Thus, the operations of this package are not documented.\newline
++ References :
++ [1] M. MORENO MAZA "A new algorithm for computing triangular
++ decomposition of algebraic varieties" NAG Tech. Rep. 4/98.
++ Version: 5. Same as 4 but Does NOT use any unproved criteria.
RegularSetDecompositionPackage(R,E,V,P,TS): Exports == Implementation where
R : GcdDomain
E : OrderedAbelianMonoidSup
V : OrderedSet
P : RecursivePolynomialCategory(R,E,V)
TS : RegularTriangularSetCategory(R,E,V,P)
N ==> NonNegativeInteger
Z ==> Integer
B ==> Boolean
LP ==> List P
PS ==> GeneralPolynomialSet(R,E,V,P)
PWT ==> Record(val : P, tower : TS)
BWT ==> Record(val : Boolean, tower : TS)
LpWT ==> Record(val : (List P), tower : TS)
Wip ==> Record(done: Split, todo: List LpWT)
Branch ==> Record(eq: List P, tower: TS, ineq: List P)
UBF ==> Union(Branch,"failed")
Split ==> List TS
iprintpack ==> InternalPrintPackage()
polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,P)
quasicomppack ==> QuasiComponentPackage(R,E,V,P,TS)
regsetgcdpack ==> RegularTriangularSetGcdPackage(R,E,V,P,TS)
Exports == with
KrullNumber: (LP, Split) -> N
numberOfVariables: (LP, Split) -> N
algebraicDecompose: (P,TS,B) -> Record(done: Split, todo: List LpWT)
transcendentalDecompose: (P,TS,N) -> Record(done: Split, todo: List LpWT)
transcendentalDecompose: (P,TS) -> Record(done: Split, todo: List LpWT)
internalDecompose: (P,TS,N,B) -> Record(done: Split, todo: List LpWT)
internalDecompose: (P,TS,N) -> Record(done: Split, todo: List LpWT)
internalDecompose: (P,TS) -> Record(done: Split, todo: List LpWT)
decompose: (LP, Split, B, B) -> Split
decompose: (LP, Split, B, B, B, B, B) -> Split
upDateBranches: (LP,Split,List LpWT,Wip,N) -> List LpWT
convert: Record(val: List P,tower: TS) -> String
printInfo: (List Record(val: List P,tower: TS), N) -> Void
Implementation == add
KrullNumber(lp: LP, lts: Split): N ==
ln: List N := [#(ts) for ts in lts]
n := #lp + reduce(max,ln)
numberOfVariables(lp: LP, lts: Split): N ==
lv: List V := variables([lp]$PS)
for ts in lts repeat lv := concat(variables(ts), lv)
# removeDuplicates(lv)
algebraicDecompose(p: P, ts: TS, clos?: B): Record(done: Split, todo: List LpWT) ==
ground? p =>
error " in algebraicDecompose$REGSET: should never happen !"
v := mvar(p); n := #ts
ts_v_- := collectUnder(ts,v)
ts_v_+ := collectUpper(ts,v)
ts_v := select(ts,v)::P
if mdeg(p) < mdeg(ts_v)
then
lgwt := internalLastSubResultant(ts_v,p,ts_v_-,true,false)$regsetgcdpack
else
lgwt := internalLastSubResultant(p,ts_v,ts_v_-,true,false)$regsetgcdpack
lts: Split := []
llpwt: List LpWT := []
for gwt in lgwt repeat
g := gwt.val; us := gwt.tower
zero? g =>
error " in algebraicDecompose$REGSET: should never happen !!"
ground? g => "leave"
if mvar(g) = v then lts := concat(augment(members(ts_v_+),augment(g,us)),lts)
h := leadingCoefficient(g,v)
b: Boolean := purelyAlgebraic?(us)
lsfp := squareFreeFactors(h)$polsetpack
lus := augment(members(ts_v_+),augment(ts_v,us)@Split)
for f in lsfp repeat
ground? f => "leave"
b and purelyAlgebraic?(f,us) => "leave"
for vs in lus repeat
llpwt := cons([[f,p],vs]$LpWT, llpwt)
[lts,llpwt]
transcendentalDecompose(p: P, ts: TS,bound: N): Record(done: Split, todo: List LpWT) ==
lts: Split
if #ts < bound
then
lts := augment(p,ts)
else
lts := []
llpwt: List LpWT := []
[lts,llpwt]
transcendentalDecompose(p: P, ts: TS): Record(done: Split, todo: List LpWT) ==
lts: Split:= augment(p,ts)
llpwt: List LpWT := []
[lts,llpwt]
internalDecompose(p: P, ts: TS,bound: N,clos?:B): Record(done: Split, todo: List LpWT) ==
clos? => internalDecompose(p,ts,bound)
internalDecompose(p,ts)
internalDecompose(p: P, ts: TS,bound: N): Record(done: Split, todo: List LpWT) ==
-- ASSUME p not constant
llpwt: List LpWT := []
lts: Split := []
-- EITHER mvar(p) is null
if (not zero? tail(p)) and (not ground? (lmp := leastMonomial(p)))
then
llpwt := cons([[mvar(p)::P],ts]$LpWT,llpwt)
p := (p exquo lmp)::P
ip := squareFreePart init(p); tp := tail p
p := mainPrimitivePart p
-- OR init(p) is null or not
lbwt := invertible?(ip,ts)@(List BWT)
for bwt in lbwt repeat
bwt.val =>
if algebraic?(mvar(p),bwt.tower)
then
rsl := algebraicDecompose(p,bwt.tower,true)
else
rsl := transcendentalDecompose(p,bwt.tower,bound)
lts := concat(rsl.done,lts)
llpwt := concat(rsl.todo,llpwt)
-- purelyAlgebraicLeadingMonomial?(ip,bwt.tower) => "leave" -- UNPROVED CRITERIA
purelyAlgebraic?(ip,bwt.tower) and purelyAlgebraic?(bwt.tower) => "leave" -- SAFE
(not ground? ip) =>
zero? tp => llpwt := cons([[ip],bwt.tower]$LpWT, llpwt)
(not ground? tp) => llpwt := cons([[ip,tp],bwt.tower]$LpWT, llpwt)
riv := removeZero(ip,bwt.tower)
(zero? riv) =>
zero? tp => lts := cons(bwt.tower,lts)
(not ground? tp) => llpwt := cons([[tp],bwt.tower]$LpWT, llpwt)
llpwt := cons([[riv * mainMonomial(p) + tp],bwt.tower]$LpWT, llpwt)
[lts,llpwt]
internalDecompose(p: P, ts: TS): Record(done: Split, todo: List LpWT) ==
-- ASSUME p not constant
llpwt: List LpWT := []
lts: Split := []
-- EITHER mvar(p) is null
if (not zero? tail(p)) and (not ground? (lmp := leastMonomial(p)))
then
llpwt := cons([[mvar(p)::P],ts]$LpWT,llpwt)
p := (p exquo lmp)::P
ip := squareFreePart init(p); tp := tail p
p := mainPrimitivePart p
-- OR init(p) is null or not
lbwt := invertible?(ip,ts)@(List BWT)
for bwt in lbwt repeat
bwt.val =>
if algebraic?(mvar(p),bwt.tower)
then
rsl := algebraicDecompose(p,bwt.tower,false)
else
rsl := transcendentalDecompose(p,bwt.tower)
lts := concat(rsl.done,lts)
llpwt := concat(rsl.todo,llpwt)
purelyAlgebraic?(ip,bwt.tower) and purelyAlgebraic?(bwt.tower) => "leave"
(not ground? ip) =>
zero? tp => llpwt := cons([[ip],bwt.tower]$LpWT, llpwt)
(not ground? tp) => llpwt := cons([[ip,tp],bwt.tower]$LpWT, llpwt)
riv := removeZero(ip,bwt.tower)
(zero? riv) =>
zero? tp => lts := cons(bwt.tower,lts)
(not ground? tp) => llpwt := cons([[tp],bwt.tower]$LpWT, llpwt)
llpwt := cons([[riv * mainMonomial(p) + tp],bwt.tower]$LpWT, llpwt)
[lts,llpwt]
decompose(lp: LP, lts: Split, clos?: B, info?: B): Split ==
decompose(lp,lts,false,false,clos?,true,info?)
convert(lpwt: LpWT): String ==
ls: List String := ["<", string((#(lpwt.val))::Z), ",", string((#(lpwt.tower))::Z), ">" ]
concat ls
printInfo(toSee: List LpWT, n: N): Void ==
lpwt := first toSee
s: String := concat ["[", string((#toSee)::Z), " ", convert(lpwt)@String]
m: N := #(lpwt.val)
toSee := rest toSee
for lpwt in toSee repeat
m := m + #(lpwt.val)
s := concat [s, ",", convert(lpwt)@String]
s := concat [s, " -> |", string(m::Z), "|; {", string(n::Z),"}]"]
iprint(s)$iprintpack
void()
decompose(lp: LP, lts: Split, cleanW?: B, sqfr?: B, clos?: B, rem?: B, info?: B): Split ==
-- if cleanW? then REMOVE REDUNDANT COMPONENTS in lts
-- if sqfr? then SPLIT the system with SQUARE-FREE FACTORIZATION
-- if clos? then SOLVE in the closure sense
-- if rem? then REDUCE the current p by using remainder
-- if info? then PRINT info
empty? lp => lts
branches: List Branch := prepareDecompose(lp,lts,cleanW?,sqfr?)$quasicomppack
empty? branches => []
toSee: List LpWT := [[br.eq,br.tower]$LpWT for br in branches]
toSave: Split := []
if clos? then bound := KrullNumber(lp,lts) else bound := numberOfVariables(lp,lts)
while (not empty? toSee) repeat
if info? then printInfo(toSee,#toSave)
lpwt := first toSee; toSee := rest toSee
lp := lpwt.val; ts := lpwt.tower
empty? lp =>
toSave := cons(ts, toSave)
p := first lp; lp := rest lp
if rem? and (not ground? p) and (not empty? ts)
then
p := remainder(p,ts).polnum
p := removeZero(p,ts)
zero? p => toSee := cons([lp,ts]$LpWT, toSee)
ground? p => "leave"
rsl := internalDecompose(p,ts,bound,clos?)
toSee := upDateBranches(lp,toSave,toSee,rsl,bound)
removeSuperfluousQuasiComponents(toSave)$quasicomppack
upDateBranches(leq:LP,lts:Split,current:List LpWT,wip: Wip,n:N): List LpWT ==
newBranches: List LpWT := wip.todo
newComponents: Split := wip.done
branches1, branches2: List LpWT
branches1 := []; branches2 := []
for branch in newBranches repeat
us := branch.tower
#us > n => "leave"
newleq := sort(infRittWu?,concat(leq,branch.val))
--foo := rewriteSetWithReduction(newleq,us,initiallyReduce,initiallyReduced?)
--any?(ground?,foo) => "leave"
branches1 := cons([newleq,us]$LpWT, branches1)
for us in newComponents repeat
#us > n => "leave"
subQuasiComponent?(us,lts)$quasicomppack => "leave"
--newleq := leq
--foo := rewriteSetWithReduction(newleq,us,initiallyReduce,initiallyReduced?)
--any?(ground?,foo) => "leave"
branches2 := cons([leq,us]$LpWT, branches2)
empty? branches1 =>
empty? branches2 => current
concat(branches2, current)
branches := concat [branches2, branches1, current]
-- branches := concat(branches,current)
removeSuperfluousCases(branches)$quasicomppack
@
\section{domain REGSET RegularTriangularSet}
Several domain constructors implement regular triangular sets (or regular
chains). Among them {\bf RegularTriangularSet} and
{\bf SquareFreeRegularTriangularSet}. They also implement an algorithm
by Marc Moreno Maza for computing triangular decompositions of polynomial
systems. This method is refined in the package {\bf LazardSetSolvingPackage}
in order to produce decompositions by means of Lazard triangular sets.
<<domain REGSET RegularTriangularSet>>=
)abbrev domain REGSET RegularTriangularSet
++ Author: Marc Moreno Maza
++ Date Created: 08/25/1998
++ Date Last Updated: 16/12/1998
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Description:
++ This domain provides an implementation of regular chains.
++ Moreover, the operation \axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}
++ is an implementation of a new algorithm for solving polynomial systems by
++ means of regular chains.\newline
++ References :
++ [1] M. MORENO MAZA "A new algorithm for computing triangular
++ decomposition of algebraic varieties" NAG Tech. Rep. 4/98.
++ Version: Version 11.
RegularTriangularSet(R,E,V,P) : Exports == Implementation where
R : GcdDomain
E : OrderedAbelianMonoidSup
V : OrderedSet
P : RecursivePolynomialCategory(R,E,V)
N ==> NonNegativeInteger
Z ==> Integer
B ==> Boolean
LP ==> List P
PtoP ==> P -> P
PS ==> GeneralPolynomialSet(R,E,V,P)
PWT ==> Record(val : P, tower : $)
BWT ==> Record(val : Boolean, tower : $)
LpWT ==> Record(val : (List P), tower : $)
Split ==> List $
iprintpack ==> InternalPrintPackage()
polsetpack ==> PolynomialSetUtilitiesPackage(R,E,V,P)
quasicomppack ==> QuasiComponentPackage(R,E,V,P,$)
regsetgcdpack ==> RegularTriangularSetGcdPackage(R,E,V,P,$)
regsetdecomppack ==> RegularSetDecompositionPackage(R,E,V,P,$)
Exports == RegularTriangularSetCategory(R,E,V,P) with
internalAugment: (P,$,B,B,B,B,B) -> List $
++ \axiom{internalAugment(p,ts,b1,b2,b3,b4,b5)}
++ is an internal subroutine, exported only for developement.
zeroSetSplit: (LP, B, B) -> Split
++ \axiom{zeroSetSplit(lp,clos?,info?)} has the same specifications as
++ \axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}.
++ Moreover, if \axiom{clos?} then solves in the sense of the Zariski closure
++ else solves in the sense of the regular zeros. If \axiom{info?} then
++ do print messages during the computations.
zeroSetSplit: (LP, B, B, B, B) -> Split
++ \axiom{zeroSetSplit(lp,b1,b2.b3,b4)}
++ is an internal subroutine, exported only for developement.
internalZeroSetSplit: (LP, B, B, B) -> Split
++ \axiom{internalZeroSetSplit(lp,b1,b2,b3)}
++ is an internal subroutine, exported only for developement.
pre_process: (LP, B, B) -> Record(val: LP, towers: Split)
++ \axiom{pre_process(lp,b1,b2)}
++ is an internal subroutine, exported only for developement.
Implementation == add
Rep == LP
copy ts ==
per(copy(rep(ts))$LP)
empty() ==
per([])
empty?(ts:$) ==
empty?(rep(ts))
parts ts ==
rep(ts)
members ts ==
rep(ts)
map (f : PtoP, ts : $) : $ ==
construct(map(f,rep(ts))$LP)$$
map! (f : PtoP, ts : $) : $ ==
construct(map!(f,rep(ts))$LP)$$
member? (p,ts) ==
member?(p,rep(ts))$LP
unitIdealIfCan() ==
"failed"::Union($,"failed")
roughUnitIdeal? ts ==
false
coerce(ts:$) : OutputForm ==
lp : List(P) := reverse(rep(ts))
brace([p::OutputForm for p in lp]$List(OutputForm))$OutputForm
mvar ts ==
empty? ts => error "mvar$REGSET: #1 is empty"
mvar(first(rep(ts)))$P
first ts ==
empty? ts => "failed"::Union(P,"failed")
first(rep(ts))::Union(P,"failed")
last ts ==
empty? ts => "failed"::Union(P,"failed")
last(rep(ts))::Union(P,"failed")
rest ts ==
empty? ts => "failed"::Union($,"failed")
per(rest(rep(ts)))::Union($,"failed")
coerce(ts:$) : (List P) ==
rep(ts)
collectUpper (ts,v) ==
empty? ts => ts
lp := rep(ts)
newlp : Rep := []
while (not empty? lp) and (mvar(first(lp)) > v) repeat
newlp := cons(first(lp),newlp)
lp := rest lp
per(reverse(newlp))
collectUnder (ts,v) ==
empty? ts => ts
lp := rep(ts)
while (not empty? lp) and (mvar(first(lp)) >= v) repeat
lp := rest lp
per(lp)
construct(lp:List(P)) ==
ts : $ := per([])
empty? lp => ts
lp := sort(infRittWu?,lp)
while not empty? lp repeat
eif := extendIfCan(ts,first(lp))
not (eif case $) =>
error"in construct : List P -> $ from REGSET : bad #1"
ts := eif::$
lp := rest lp
ts
extendIfCan(ts:$,p:P) ==
ground? p => "failed"::Union($,"failed")
empty? ts =>
p := primitivePart p
(per([p]))::Union($,"failed")
not (mvar(ts) < mvar(p)) => "failed"::Union($,"failed")
invertible?(init(p),ts)@Boolean =>
(per(cons(p,rep(ts))))::Union($,"failed")
"failed"::Union($,"failed")
removeZero(p:P, ts:$): P ==
(ground? p) or (empty? ts) => p
v := mvar(p)
ts_v_- := collectUnder(ts,v)
if algebraic?(v,ts)
then
q := lazyPrem(p,select(ts,v)::P)
zero? q => return q
zero? removeZero(q,ts_v_-) => return 0
empty? ts_v_- => p
q: P := 0
while positive? degree(p,v) repeat
q := removeZero(init(p),ts_v_-) * mainMonomial(p) + q
p := tail(p)
q + removeZero(p,ts_v_-)
internalAugment(p:P,ts:$): $ ==
-- ASSUME that adding p to ts DOES NOT require any split
ground? p => error "in internalAugment$REGSET: ground? #1"
first(internalAugment(p,ts,false,false,false,false,false))
internalAugment(lp:List(P),ts:$): $ ==
-- ASSUME that adding p to ts DOES NOT require any split
empty? lp => ts
internalAugment(rest lp, internalAugment(first lp, ts))
internalAugment(p:P,ts:$,rem?:B,red?:B,prim?:B,sqfr?:B,extend?:B): Split ==
-- ASSUME p is not a constant
-- ASSUME mvar(p) is not algebraic w.r.t. ts
-- ASSUME init(p) invertible modulo ts
-- if rem? then REDUCE p by remainder
-- if prim? then REPLACE p by its main primitive part
-- if sqfr? then FACTORIZE SQUARE FREE p over R
-- if extend? DO NOT ASSUME every pol in ts_v_+ is invertible modulo ts
v := mvar(p)
ts_v_- := collectUnder(ts,v)
ts_v_+ := collectUpper(ts,v)
if rem? then p := remainder(p,ts_v_-).polnum
-- if rem? then p := reduceByQuasiMonic(p,ts_v_-)
if red? then p := removeZero(p,ts_v_-)
if prim? then p := mainPrimitivePart p
if sqfr?
then
lsfp := squareFreeFactors(p)$polsetpack
lts: Split := [per(cons(f,rep(ts_v_-))) for f in lsfp]
else
lts: Split := [per(cons(p,rep(ts_v_-)))]
extend? => extend(members(ts_v_+),lts)
[per(concat(rep(ts_v_+),rep(us))) for us in lts]
augment(p:P,ts:$): List $ ==
ground? p => error "in augment$REGSET: ground? #1"
algebraic?(mvar(p),ts) => error "in augment$REGSET: bad #1"
-- ASSUME init(p) invertible modulo ts
-- DOES NOT ASSUME anything else.
-- THUS reduction, mainPrimitivePart and squareFree are NEEDED
internalAugment(p,ts,true,true,true,true,true)
extend(p:P,ts:$): List $ ==
ground? p => error "in extend$REGSET: ground? #1"
v := mvar(p)
not (mvar(ts) < mvar(p)) => error "in extend$REGSET: bad #1"
lts: List($) := []
split: List($) := invertibleSet(init(p),ts)
for us in split repeat
lts := concat(augment(p,us),lts)
lts
invertible?(p:P,ts:$): Boolean ==
toseInvertible?(p,ts)$regsetgcdpack
invertible?(p:P,ts:$): List BWT ==
toseInvertible?(p,ts)$regsetgcdpack
invertibleSet(p:P,ts:$): Split ==
toseInvertibleSet(p,ts)$regsetgcdpack
lastSubResultant(p1:P,p2:P,ts:$): List PWT ==
toseLastSubResultant(p1,p2,ts)$regsetgcdpack
squareFreePart(p:P, ts: $): List PWT ==
toseSquareFreePart(p,ts)$regsetgcdpack
intersect(p:P, ts: $): List($) == decompose([p], [ts], false, false)$regsetdecomppack
intersect(lp: LP, lts: List($)): List($) == decompose(lp, lts, false, false)$regsetdecomppack
-- SOLVE in the regular zero sense
-- and DO NOT PRINT info
zeroSetSplit(lp:List(P)) == zeroSetSplit(lp,true,false)
-- by default SOLVE in the closure sense
-- and DO NOT PRINT info
zeroSetSplit(lp:List(P), clos?: B) == zeroSetSplit(lp,clos?, false)
-- DO NOT PRINT info
zeroSetSplit(lp:List(P), clos?: B, info?: B) ==
-- if clos? then SOLVE in the closure sense
-- if info? then PRINT info
-- by default USE hash-tables
-- and PREPROCESS the input system
zeroSetSplit(lp,true,clos?,info?,true)
zeroSetSplit(lp:List(P),hash?:B,clos?:B,info?:B,prep?:B) ==
-- if hash? then USE hash-tables
-- if info? then PRINT information
-- if clos? then SOLVE in the closure sense
-- if prep? then PREPROCESS the input system
if hash?
then
s1, s2, s3, dom1, dom2, dom3: String
e: String := empty()$String
if info? then (s1,s2,s3) := ("w","g","i") else (s1,s2,s3) := (e,e,e)
if info?
then
(dom1, dom2, dom3) := ("QCMPACK", "REGSETGCD: Gcd", "REGSETGCD: Inv Set")
else
(dom1, dom2, dom3) := (e,e,e)
startTable!(s1,"W",dom1)$quasicomppack
startTableGcd!(s2,"G",dom2)$regsetgcdpack
startTableInvSet!(s3,"I",dom3)$regsetgcdpack
lts := internalZeroSetSplit(lp,clos?,info?,prep?)
if hash?
then
stopTable!()$quasicomppack
stopTableGcd!()$regsetgcdpack
stopTableInvSet!()$regsetgcdpack
lts
internalZeroSetSplit(lp:LP,clos?:B,info?:B,prep?:B) ==
-- if info? then PRINT information
-- if clos? then SOLVE in the closure sense
-- if prep? then PREPROCESS the input system
if prep?
then
pp := pre_process(lp,clos?,info?)
lp := pp.val
lts := pp.towers
else
ts: $ := [[]]
lts := [ts]
lp := remove(zero?, lp)
any?(ground?, lp) => []
empty? lp => lts
empty? lts => lts
lp := sort(infRittWu?,lp)
clos? => decompose(lp,lts, clos?, info?)$regsetdecomppack
-- IN DIM > 0 with clos? the following is false ...
for p in lp repeat
lts := decompose([p],lts, clos?, info?)$regsetdecomppack
lts
largeSystem?(lp:LP): Boolean ==
-- Gonnet and Gerdt and not Wu-Wang.2
#lp > 16 => true
#lp < 13 => false
lts: List($) := []
(#lp :: Z - numberOfVariables(lp,lts)$regsetdecomppack :: Z) > 3
smallSystem?(lp:LP): Boolean ==
-- neural, Vermeer, Liu, and not f-633 and not Hairer-2
#lp < 5
mediumSystem?(lp:LP): Boolean ==
-- f-633 and not Hairer-2
lts: List($) := []
(numberOfVariables(lp,lts)$regsetdecomppack :: Z - #lp :: Z) < 2
lin?(p:P):Boolean == ground?(init(p)) and one?(mdeg(p))
pre_process(lp:LP,clos?:B,info?:B): Record(val: LP, towers: Split) ==
-- if info? then PRINT information
-- if clos? then SOLVE in the closure sense
ts: $ := [[]];
lts: Split := [ts]
empty? lp => [lp,lts]
lp1: List P := []
lp2: List P := []
for p in lp repeat
ground? (tail p) => lp1 := cons(p, lp1)
lp2 := cons(p, lp2)
lts: Split := decompose(lp1,[ts],clos?,info?)$regsetdecomppack
probablyZeroDim?(lp)$polsetpack =>
largeSystem?(lp) => return [lp2,lts]
if #lp > 7
then
-- Butcher (8,8) + Wu-Wang.2 (13,16)
lp2 := crushedSet(lp2)$polsetpack
lp2 := remove(zero?,lp2)
any?(ground?,lp2) => return [lp2, lts]
lp3 := [p for p in lp2 | lin?(p)]
lp4 := [p for p in lp2 | not lin?(p)]
if clos?
then
lts := decompose(lp4,lts, clos?, info?)$regsetdecomppack
else
lp4 := sort(infRittWu?,lp4)
for p in lp4 repeat
lts := decompose([p],lts, clos?, info?)$regsetdecomppack
lp2 := lp3
else
lp2 := crushedSet(lp2)$polsetpack
lp2 := remove(zero?,lp2)
any?(ground?,lp2) => return [lp2, lts]
if clos?
then
lts := decompose(lp2,lts, clos?, info?)$regsetdecomppack
else
lp2 := sort(infRittWu?,lp2)
for p in lp2 repeat
lts := decompose([p],lts, clos?, info?)$regsetdecomppack
lp2 := []
return [lp2,lts]
smallSystem?(lp) => [lp2,lts]
mediumSystem?(lp) => [crushedSet(lp2)$polsetpack,lts]
lp3 := [p for p in lp2 | lin?(p)]
lp4 := [p for p in lp2 | not lin?(p)]
if clos?
then
lts := decompose(lp4,lts, clos?, info?)$regsetdecomppack
else
lp4 := sort(infRittWu?,lp4)
for p in lp4 repeat
lts := decompose([p],lts, clos?, info?)$regsetdecomppack
if clos?
then
lts := decompose(lp3,lts, clos?, info?)$regsetdecomppack
else
lp3 := sort(infRittWu?,lp3)
for p in lp3 repeat
lts := decompose([p],lts, clos?, info?)$regsetdecomppack
lp2 := []
return [lp2,lts]
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<category RSETCAT RegularTriangularSetCategory>>
<<package QCMPACK QuasiComponentPackage>>
<<package RSETGCD RegularTriangularSetGcdPackage>>
<<package RSDCMPK RegularSetDecompositionPackage>>
<<domain REGSET RegularTriangularSet>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|