1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra plot.spad}
\author{Michael Monagan, Clifton J. Williamson, Jon Steinbach, Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain PLOT Plot}
<<domain PLOT Plot>>=
)abbrev domain PLOT Plot
++ Author: Michael Monagan (revised by Clifton J. Williamson)
++ Date Created: Jan 1988
++ Date Last Updated: 30 Nov 1990 by Jonathan Steinbach
++ Basic Operations: plot, pointPlot, plotPolar, parametric?, zoom, refine,
++ tRange, minPoints, setMinPoints, maxPoints, screenResolution, adaptive?,
++ setAdaptive, numFunEvals, debug
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: plot, function, parametric
++ References:
++ Description: The Plot domain supports plotting of functions defined over a
++ real number system. A real number system is a model for the real
++ numbers and as such may be an approximation. For example
++ floating point numbers and infinite continued fractions.
++ The facilities at this point are limited to 2-dimensional plots
++ or either a single function or a parametric function.
Plot(): Exports == Implementation where
B ==> Boolean
F ==> DoubleFloat
I ==> Integer
L ==> List
N ==> NonNegativeInteger
OUT ==> OutputForm
P ==> Point F
RN ==> Fraction Integer
S ==> String
SEG ==> Segment
R ==> Segment F
C ==> Record(source: F -> P,ranges: L R,knots: L F,points: L P)
Exports ==> PlottablePlaneCurveCategory with
--% function plots
plot: (F -> F,R) -> %
++ plot(f,a..b) plots the function \spad{f(x)} on the interval \spad{[a,b]}.
plot: (F -> F,R,R) -> %
++ plot(f,a..b,c..d) plots the function \spad{f(x)} on the interval
++ \spad{[a,b]}; y-range of \spad{[c,d]} is noted in Plot object.
--% multiple function plots
plot: (L(F -> F),R) -> %
++ plot([f1,...,fm],a..b) plots the functions \spad{y = f1(x)},...,
++ \spad{y = fm(x)} on the interval \spad{a..b}.
plot: (L(F -> F),R,R) -> %
++ plot([f1,...,fm],a..b,c..d) plots the functions \spad{y = f1(x)},...,
++ \spad{y = fm(x)} on the interval \spad{a..b}; y-range of \spad{[c,d]} is
++ noted in Plot object.
--% parametric plots
plot: (F -> F,F -> F,R) -> %
++ plot(f,g,a..b) plots the parametric curve \spad{x = f(t)}, \spad{y = g(t)}
++ as t ranges over the interval \spad{[a,b]}.
plot: (F -> F,F -> F,R,R,R) -> %
++ plot(f,g,a..b,c..d,e..f) plots the parametric curve \spad{x = f(t)},
++ \spad{y = g(t)} as t ranges over the interval \spad{[a,b]}; x-range
++ of \spad{[c,d]} and y-range of \spad{[e,f]} are noted in Plot object.
--% parametric plots
pointPlot: (F -> P,R) -> %
++ pointPlot(t +-> (f(t),g(t)),a..b) plots the parametric curve
++ \spad{x = f(t)}, \spad{y = g(t)} as t ranges over the interval \spad{[a,b]}.
pointPlot: (F -> P,R,R,R) -> %
++ pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f) plots the parametric
++ curve \spad{x = f(t)}, \spad{y = g(t)} as t ranges over the interval \spad{[a,b]};
++ x-range of \spad{[c,d]} and y-range of \spad{[e,f]} are noted in Plot object.
--% polar plots
plotPolar: (F -> F,R) -> %
++ plotPolar(f,a..b) plots the polar curve \spad{r = f(theta)} as
++ theta ranges over the interval \spad{[a,b]}; this is the same as
++ the parametric curve \spad{x = f(t) * cos(t)}, \spad{y = f(t) * sin(t)}.
plotPolar: (F -> F) -> %
++ plotPolar(f) plots the polar curve \spad{r = f(theta)} as theta
++ ranges over the interval \spad{[0,2*%pi]}; this is the same as
++ the parametric curve \spad{x = f(t) * cos(t)}, \spad{y = f(t) * sin(t)}.
plot: (%,R) -> % -- change the range
++ plot(x,r) \undocumented
parametric?: % -> B
++ parametric? determines whether it is a parametric plot?
zoom: (%,R) -> %
++ zoom(x,r) \undocumented
zoom: (%,R,R) -> %
++ zoom(x,r,s) \undocumented
refine: (%,R) -> %
++ refine(x,r) \undocumented
refine: % -> %
++ refine(p) performs a refinement on the plot p
tRange: % -> R
++ tRange(p) returns the range of the parameter in a parametric plot p
minPoints: () -> I
++ minPoints() returns the minimum number of points in a plot
setMinPoints: I -> I
++ setMinPoints(i) sets the minimum number of points in a plot to i
maxPoints: () -> I
++ maxPoints() returns the maximum number of points in a plot
setMaxPoints: I -> I
++ setMaxPoints(i) sets the maximum number of points in a plot to i
screenResolution: () -> I
++ screenResolution() returns the screen resolution
setScreenResolution: I -> I
++ setScreenResolution(i) sets the screen resolution to i
adaptive?: () -> B
++ adaptive?() determines whether plotting be done adaptively
setAdaptive: B -> B
++ setAdaptive(true) turns adaptive plotting on
++ \spad{setAdaptive(false)} turns adaptive plotting off
numFunEvals: () -> I
++ numFunEvals() returns the number of points computed
debug: B -> B
++ debug(true) turns debug mode on
++ \spad{debug(false)} turns debug mode off
Implementation ==> add
import PointPackage(DoubleFloat)
--% local functions
checkRange : R -> R
-- checks that left-hand endpoint is less than right-hand endpoint
intersect : (R,R) -> R
-- intersection of two intervals
union : (R,R) -> R
-- union of two intervals
join : (L C,I) -> R
parametricRange: % -> R
select : (L P,P -> F,(F,F) -> F) -> F
rangeRefine : (C,R) -> C
adaptivePlot : (C,R,R,R,I) -> C
basicPlot : (F -> P,R) -> C
basicRefine : (C,R) -> C
pt : (F,F) -> P
Fnan? : F -> Boolean
Pnan? : P -> Boolean
--% representation
Rep := Record( parametric: B, _
display: L R, _
bounds: L R, _
axisLabels: L S, _
functions: L C )
--% global constants
ADAPTIVE: B := true
MINPOINTS: I := 49
MAXPOINTS: I := 1000
NUMFUNEVALS: I := 0
SCREENRES: I := 500
ANGLEBOUND: F := cos inv (4::F)
DEBUG: B := false
Fnan?(x) == x ~= x
Pnan?(x) == any?(Fnan?,x)
--% graphics output
listBranches plot ==
outList : L L P := nil()
for curve in plot.functions repeat
-- curve is C
newl:L P:=nil()
for p in curve.points repeat
if not Pnan? p then newl:=cons(p,newl)
else if not empty? newl then
outList := concat(newl:=reverse! newl,outList)
newl:=nil()
if not empty? newl then outList := concat(newl:=reverse! newl,outList)
-- print(outList::OutputForm)
outList
checkRange r == (lo r > hi r => error "ranges cannot be negative"; r)
intersect(s,t) == checkRange (max(lo s,lo t) .. min(hi s,hi t))
union(s,t) == min(lo s,lo t) .. max(hi s,hi t)
join(l,i) ==
rr := first l
u : R :=
i = 0 => first(rr.ranges)
i = 1 => second(rr.ranges)
third(rr.ranges)
for r in rest l repeat
i = 0 => u := union(u,first(r.ranges))
i = 1 => u := union(u,second(r.ranges))
u := union(u,third(r.ranges))
u
parametricRange r == first(r.bounds)
minPoints() == MINPOINTS
setMinPoints n ==
if n < 3 then error "three points minimum required"
if MAXPOINTS < n then MAXPOINTS := n
MINPOINTS := n
maxPoints() == MAXPOINTS
setMaxPoints n ==
if n < 3 then error "three points minimum required"
if MINPOINTS > n then MINPOINTS := n
MAXPOINTS := n
screenResolution() == SCREENRES
setScreenResolution n ==
if n < 2 then error "buy a new terminal"
SCREENRES := n
adaptive?() == ADAPTIVE
setAdaptive b == ADAPTIVE := b
parametric? p == p.parametric
numFunEvals() == NUMFUNEVALS
debug b == DEBUG := b
xRange plot == second plot.bounds
yRange plot == third plot.bounds
tRange plot == first plot.bounds
select(l,f,g) ==
m := f first l
if Fnan? m then m := 0
for p in rest l repeat
n := m
m := g(m, f p)
if Fnan? m then m := n
m
rangeRefine(curve,nRange) ==
checkRange nRange; l := lo nRange; h := hi nRange
t := curve.knots; p := curve.points; f := curve.source
while not null t and first t < l repeat
(t := rest t; p := rest p)
c: L F := nil(); q: L P := nil()
while not null t and (first t) <= h repeat
c := concat(first t,c); q := concat(first p,q)
t := rest t; p := rest p
if null c then return basicPlot(f,nRange)
if first c < h then
c := concat(h,c)
q := concat(f h,q)
NUMFUNEVALS := NUMFUNEVALS + 1
t := c := reverse_! c; p := q := reverse_! q
s := (h-l)/(minPoints()::F-1)
if (first t) ~= l then
t := c := concat(l,c)
p := q := concat(f l,p)
NUMFUNEVALS := NUMFUNEVALS + 1
while not null rest t repeat
n := wholePart((second(t) - first(t))/s)
d := (second(t) - first(t))/((n+1)::F)
for i in 1..n repeat
t.rest := concat(first(t) + d,rest t)
p.rest := concat(f second t,rest p)
NUMFUNEVALS := NUMFUNEVALS + 1
t := rest t; p := rest p
t := rest t
p := rest p
xRange := select(q,xCoord,min) .. select(q,xCoord,max)
yRange := select(q,yCoord,min) .. select(q,yCoord,max)
[ f, [nRange,xRange,yRange], c, q]
adaptivePlot(curve,tRange,xRange,yRange,pixelfraction) ==
xDiff := hi xRange - lo xRange
yDiff := hi yRange - lo yRange
xDiff = 0 or yDiff = 0 => curve
l := lo tRange; h := hi tRange
(tDiff := h-l) = 0 => curve
-- if (EQL(yDiff, _$NaNvalue$Lisp)$Lisp) then yDiff := 1::F
t := curve.knots
#t < 3 => curve
p := curve.points; f := curve.source
minLength:F := 4::F/500::F
maxLength:F := 1::F/6::F
tLimit := tDiff/(pixelfraction*500)::F
while not null t and first t < l repeat (t := rest t; p := rest p)
#t < 3 => curve
headert := t; headerp := p
-- jitter the input points
-- while not null rest rest t repeat
-- t0 := second(t); t1 := third(t)
-- jitter := (random()$I) :: F
-- jitter := sin (jitter)
-- val := t0 + jitter * (t1-t0)/10::F
-- t.2 := val; p.2 := f val
-- t := rest t; p := rest p
-- t := headert; p := headerp
st := t; sp := p
todot : L L F := nil()
todop : L L P := nil()
while not null rest rest st repeat
todot := concat_!(todot, st)
todop := concat_!(todop, sp)
st := rest st; sp := rest sp
st := headert; sp := headerp
todo1 := todot; todo2 := todop
n : I := 0
while not null todo1 repeat
st := first(todo1)
t0 := first(st); t1 := second(st); t2 := third(st)
if t2 > h then leave
t2 - t0 < tLimit =>
todo1 := rest todo1
todo2 := rest todo2
if not null todo1 then (t := first(todo1); p := first(todo2))
sp := first(todo2)
x0 := xCoord first(sp); y0 := yCoord first(sp)
x1 := xCoord second(sp); y1 := yCoord second(sp)
x2 := xCoord third(sp); y2 := yCoord third(sp)
a1 := (x1-x0)/xDiff; b1 := (y1-y0)/yDiff
a2 := (x2-x1)/xDiff; b2 := (y2-y1)/yDiff
s1 := sqrt(a1**2+b1**2); s2 := sqrt(a2**2+b2**2)
dp := a1*a2+b1*b2
s1 < maxLength and s2 < maxLength and _
(s1 = 0::F or s2 = 0::F or
s1 < minLength and s2 < minLength or _
dp/s1/s2 > ANGLEBOUND) =>
todo1 := rest todo1
todo2 := rest todo2
if not null todo1 then (t := first(todo1); p := first(todo2))
if n > MAXPOINTS then leave else n := n + 1
st := rest t
if not null rest rest st then
tm := (t0+t1)/2::F
tj := tm
t.rest := concat(tj,rest t)
p.rest := concat(f tj, rest p)
todo1 := concat_!(todo1, t)
todo2 := concat_!(todo2, p)
t := rest t; p := rest p
todo1 := concat_!(todo1, t)
todo2 := concat_!(todo2, p)
t := rest t; p := rest p
todo1 := rest todo1; todo2 := rest todo2
tm := (t1+t2)/2::F
tj := tm
t.rest := concat(tj, rest t)
p.rest := concat(f tj, rest p)
todo1 := concat_!(todo1, t)
todo2 := concat_!(todo2, p)
t := rest t; p := rest p
todo1 := concat_!(todo1, t)
todo2 := concat_!(todo2, p)
todo1 := rest todo1
todo2 := rest todo2
if not null todo1 then (t := first(todo1); p := first(todo2))
else
tm := (t0+t1)/2::F
tj := tm
t.rest := concat(tj,rest t)
p.rest := concat(f tj, rest p)
todo1 := concat_!(todo1, t)
todo2 := concat_!(todo2, p)
t := rest t; p := rest p
todo1 := concat_!(todo1, t)
todo2 := concat_!(todo2, p)
t := rest t; p := rest p
tm := (t1+t2)/2::F
tj := tm
t.rest := concat(tj, rest t)
p.rest := concat(f tj, rest p)
todo1 := concat_!(todo1, t)
todo2 := concat_!(todo2, p)
todo1 := rest todo1
todo2 := rest todo2
if not null todo1 then (t := first(todo1); p := first(todo2))
n > 0 =>
NUMFUNEVALS := NUMFUNEVALS + n
t := curve.knots; p := curve.points
xRange := select(p,xCoord,min) .. select(p,xCoord,max)
yRange := select(p,yCoord,min) .. select(p,yCoord,max)
[ curve.source, [tRange,xRange,yRange], t, p ]
curve
basicPlot(f,tRange) ==
checkRange tRange
l := lo tRange
h := hi tRange
t : L F := list l
p : L P := list f l
s := (h-l)/(minPoints()-1)::F
for i in 2..minPoints()-1 repeat
l := l+s
t := concat(l,t)
p := concat(f l,p)
t := reverse_! concat(h,t)
p := reverse_! concat(f h,p)
-- print(p::OutputForm)
xRange : R := select(p,xCoord,min) .. select(p,xCoord,max)
yRange : R := select(p,yCoord,min) .. select(p,yCoord,max)
[ f, [tRange,xRange,yRange], t, p ]
zoom(p,xRange) ==
[p.parametric, [xRange,third(p.display)], p.bounds, _
p.axisLabels, p.functions]
zoom(p,xRange,yRange) ==
[p.parametric, [xRange,yRange], p.bounds, _
p.axisLabels, p.functions]
basicRefine(curve,nRange) ==
tRange:R := first curve.ranges
-- curve := copy$C curve -- Yet another compiler bug
curve: C := [curve.source,curve.ranges,curve.knots,curve.points]
t := curve.knots := copy curve.knots
p := curve.points := copy curve.points
l := lo nRange; h := hi nRange
f := curve.source
while not null rest t and first t < h repeat
second(t) < l => (t := rest t; p := rest p)
-- insert new point between t.0 and t.1
tm : F := (first(t) + second(t))/2::F
-- if DEBUG then output$O (tm::E)
pm := f tm
NUMFUNEVALS := NUMFUNEVALS + 1
t.rest := concat(tm,rest t); t := rest rest t
p.rest := concat(pm,rest p); p := rest rest p
t := curve.knots; p := curve.points
xRange := select(p,xCoord,min) .. select(p,xCoord,max)
yRange := select(p,yCoord,min) .. select(p,yCoord,max)
[ curve.source, [tRange,xRange,yRange], t, p ]
refine p == refine(p,parametricRange p)
refine(p,nRange) ==
NUMFUNEVALS := 0
tRange := parametricRange p
nRange := intersect(tRange,nRange)
curves: L C := [basicRefine(c,nRange) for c in p.functions]
xRange := join(curves,1); yRange := join(curves,2)
if adaptive? then
tlimit := if parametric? p then 8 else 1
curves := [adaptivePlot(c,nRange,xRange,yRange, _
tlimit) for c in curves]
xRange := join(curves,1); yRange := join(curves,2)
-- print(NUMFUNEVALS::OUT)
[p.parametric, p.display, [tRange,xRange,yRange], _
p.axisLabels, curves ]
plot(p:%,tRange:R) ==
-- re plot p on a new range making use of the points already
-- computed if possible
NUMFUNEVALS := 0
curves: L C := [rangeRefine(c,tRange) for c in p.functions]
xRange := join(curves,1); yRange := join(curves,2)
if adaptive? then
tlimit := if parametric? p then 8 else 1
curves := [adaptivePlot(c,tRange,xRange,yRange,tlimit) for c in curves]
xRange := join(curves,1); yRange := join(curves,2)
-- print(NUMFUNEVALS::OUT)
[ p.parametric, [xRange,yRange], [tRange,xRange,yRange],
p.axisLabels, curves ]
pt(xx,yy) == point(l : L F := [xx,yy])
myTrap: (F-> F, F) -> F
myTrap(ff:F-> F, f:F):F ==
s := trapNumericErrors(ff(f))$Lisp :: Union(F, "failed")
s case "failed" => _$NaNvalue$Lisp
r:F:=s::F
r > max()$F or r < min()$F => _$NaNvalue$Lisp
r
plot(f:F -> F,xRange:R) ==
p := basicPlot(pt(#1,myTrap(f,#1)),xRange)
r := p.ranges
NUMFUNEVALS := minPoints()
if adaptive? then
p := adaptivePlot(p,first r,second r,third r,1)
r := p.ranges
[ false, rest r, r, nil(), [ p ] ]
plot(f:F -> F,xRange:R,yRange:R) ==
p := plot(f,xRange)
p.display := [xRange,checkRange yRange]
p
plot(f:F -> F,g:F -> F,tRange:R) ==
p := basicPlot(pt(myTrap(f,#1),myTrap(g,#1)),tRange)
r := p.ranges
NUMFUNEVALS := minPoints()
if adaptive? then
p := adaptivePlot(p,first r,second r,third r,8)
r := p.ranges
[ true, rest r, r, nil(), [ p ] ]
plot(f:F -> F,g:F -> F,tRange:R,xRange:R,yRange:R) ==
p := plot(f,g,tRange)
p.display := [checkRange xRange,checkRange yRange]
p
pointPlot(f:F -> P,tRange:R) ==
p := basicPlot(f,tRange)
r := p.ranges
NUMFUNEVALS := minPoints()
if adaptive? then
p := adaptivePlot(p,first r,second r,third r,8)
r := p.ranges
[ true, rest r, r, nil(), [ p ] ]
pointPlot(f:F -> P,tRange:R,xRange:R,yRange:R) ==
p := pointPlot(f,tRange)
p.display := [checkRange xRange,checkRange yRange]
p
plot(l:L(F -> F),xRange:R) ==
if null l then error "empty list of functions"
t: L C := [ basicPlot(pt(#1,myTrap(f,#1)),xRange) for f in l ]
yRange := join(t,2)
NUMFUNEVALS := # l * minPoints()
if adaptive? then
t := [adaptivePlot(p,xRange,xRange,yRange,1) _
for f in l for p in t]
yRange := join(t,2)
-- print(NUMFUNEVALS::OUT)
[false, [xRange,yRange], [xRange,xRange,yRange], nil(), t ]
plot(l:L(F -> F),xRange:R,yRange:R) ==
p := plot(l,xRange)
p.display := [xRange,checkRange yRange]
p
plotPolar(f,thetaRange) ==
plot(f(#1) * cos(#1),f(#1) * sin(#1),thetaRange)
plotPolar f == plotPolar(f,segment(0,2*pi()))
--% terminal output
coerce r ==
spaces: OUT := coerce " "
xSymbol := "x = " :: OUT
ySymbol := "y = " :: OUT
tSymbol := "t = " :: OUT
plotSymbol := "PLOT" :: OUT
tRange := (parametricRange r) :: OUT
f : L OUT := nil()
for curve in r.functions repeat
xRange := second(curve.ranges) :: OUT
yRange := third(curve.ranges) :: OUT
l : L OUT := [xSymbol,xRange,spaces,ySymbol,yRange]
if parametric? r then
l := concat_!([tSymbol,tRange,spaces],l)
h : OUT := hconcat l
l := [p::OUT for p in curve.points]
f := concat(vconcat concat(h,l),f)
prefix("PLOT" :: OUT, reverse_! f)
@
\section{package PLOT1 PlotFunctions1}
<<package PLOT1 PlotFunctions1>>=
import Symbol
import Segment DoubleFloat
import Plot
)abbrev package PLOT1 PlotFunctions1
++ Authors: R.T.M. Bronstein, C.J. Williamson
++ Date Created: Jan 1989
++ Date Last Updated: 4 Mar 1990
++ Basic Operations: plot, plotPolar
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description: PlotFunctions1 provides facilities for plotting curves
++ where functions SF -> SF are specified by giving an expression
PlotFunctions1(S:ConvertibleTo InputForm): with
plot : (S, Symbol, Segment DoubleFloat) -> Plot
++ plot(fcn,x,seg) plots the graph of \spad{y = f(x)} on a interval
plot : (S, S, Symbol, Segment DoubleFloat) -> Plot
++ plot(f,g,t,seg) plots the graph of \spad{x = f(t)}, \spad{y = g(t)} as t
++ ranges over an interval.
plotPolar : (S, Symbol, Segment DoubleFloat) -> Plot
++ plotPolar(f,theta,seg) plots the graph of \spad{r = f(theta)} as
++ theta ranges over an interval
plotPolar : (S, Symbol) -> Plot
++ plotPolar(f,theta) plots the graph of \spad{r = f(theta)} as
++ theta ranges from 0 to 2 pi
== add
import MakeFloatCompiledFunction(S)
plot(f, x, xRange) == plot(makeFloatFunction(f, x), xRange)
plotPolar(f,theta) == plotPolar(makeFloatFunction(f,theta))
plot(f1, f2, t, tRange) ==
plot(makeFloatFunction(f1, t), makeFloatFunction(f2, t), tRange)
plotPolar(f,theta,thetaRange) ==
plotPolar(makeFloatFunction(f,theta),thetaRange)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain PLOT Plot>>
<<package PLOT1 PlotFunctions1>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|