aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/newpoint.spad.pamphlet
blob: f4b1d8bbcd7a1c9998b1fe76cfc92b4d7661b5ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra newpoint.spad}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category PTCAT PointCategory}
<<category PTCAT PointCategory>>=
)abbrev category PTCAT PointCategory
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Operations: point, elt, setelt, copy, dimension, minIndex, maxIndex,
++ convert
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: 
++ References:
++ Description: PointCategory is the category of points in space which
++ may be plotted via the graphics facilities.  Functions are provided for
++ defining points and handling elements of points.
 
PointCategory(R:Ring) : Category ==
  Join(VectorCategory(R),ConvertibleFrom List R) with
    point: List R -> %
      ++ point(l) returns a point category defined by a list l of elements from 
      ++ the domain R.
    dimension: % -> PositiveInteger
      ++ dimension(s) returns the dimension of the point category s.
    cross: (%,%) -> %
	++ cross(p,q) computes the cross product of the two points \spad{p}
	++ and \spad{q}. Error if the p and q are not 3 dimensional
    extend : (%,List R) -> %
	  ++ extend(x,l,r) \undocumented

@
\section{domain POINT Point}
<<domain POINT Point>>=
)abbrev domain POINT Point
++ Description:
++ This domain implements points in coordinate space
 
Point(R:Ring) : Exports == Implementation where
  -- Domains for points, subspaces and properties of components in
  -- a subspace
 
  Exports ==> PointCategory(R)
 
  Implementation ==> Vector (R) add
    PI   ==> PositiveInteger

    point(l:List R):% ==
      per vector l
    dimension p == (# p)::PI  -- Vector returns NonNegativeInteger...?
    convert(l:List R):% == point(l)
    cross(p0, p1) ==
      #p0 ~=3 or #p1~=3 => error "Arguments to cross must be three dimensional"      
      point [p0.2 * p1.3 - p1.2 * p0.3, _
             p1.1 * p0.3 - p0.1 * p1.3, _
             p0.1 * p1.2 - p1.1 * p0.2]
    extend(p,l) == concat(p,point l)

@
\section{domain COMPPROP SubSpaceComponentProperty}
<<domain COMPPROP SubSpaceComponentProperty>>=
)abbrev domain COMPPROP SubSpaceComponentProperty
++ Description:
++ This domain implements some global properties of subspaces.
 
SubSpaceComponentProperty() : Exports == Implementation where
 
  O ==> OutputForm
  I    ==> Integer
  PI   ==> PositiveInteger
  NNI  ==> NonNegativeInteger
  L    ==> List
  B    ==> Boolean
 
  Exports ==> SetCategory with
    new     : () -> %
	++ new() \undocumented
    closed? : % -> B
	++ closed?(x) \undocumented
    solid?  : % -> B
	++ solid?(x) \undocumented
    close   : (%,B) -> B
	++ close(x,b) \undocumented
    solid   : (%,B) -> B
	++ solid(x,b) \undocumented
    copy    : % -> %
	++ copy(x) \undocumented
 
  Implementation ==> add
    import B
    Rep := Record(closed:B, solid:B)
    closed? p == p.closed
    solid? p == p.solid
    close(p,b) == p.closed := b
    solid(p,b) == p.solid := b
    new() == [false,false]
    copy p ==
      annuderOne := new()
      close(annuderOne,closed? p)
      solid(annuderOne,solid? p)
      annuderOne
    coerce p ==
      hconcat(["Component is "::O,
              (closed? p => ""::O; "not "::O),"closed, "::O, _
              (solid? p => ""::O; "not "::O),"solid"::O ])

@
\section{domain SUBSPACE SubSpace}
<<domain SUBSPACE SubSpace>>=
)abbrev domain SUBSPACE SubSpace
++ Description:
++ This domain \undocumented
SubSpace(n:PI,R:Ring) : Exports == Implementation where
  -- n is the dimension of the subSpace
  -- The SubSpace domain is implemented as a tree. The root of the tree
  -- is the only node in which the field dataList - which points to a
  -- list of points over the ring, R - is defined. The children of the
  -- root are the top level components of the SubSpace (in 2D, these
  -- would be separate curves; in 3D, these would be separate surfaces).
  -- The pt field is only defined in the leaves.
  -- By way of example, consider a three dimensional subspace with
  -- two components - a three by three grid and a sphere. The internal
  -- representation of this subspace is a tree with a depth of three.
  -- The root holds a list of all the points used in the subspace (so,
  -- if the grid and the sphere share points, the shared points would not
  -- be represented redundantly but would be referenced by index).
  -- The root, in this case, has two children - the first points to the
  -- grid component and the second to the sphere component. The grid child
  -- has four children of its own - a 3x3 grid has 4 endpoints - and each
  -- of these point to a list of four points. To see it another way, the 
  -- grid (child of the root) holds a list of line components which, when
  -- placed one above the next, forms a grid. Each of these line components
  -- is a list of points.
  -- Points could be explicitly added to subspaces at any level. A path
  -- could be given as an argument to the addPoint() function. It is a list
  -- of NonNegativeIntegers and refers, in order, to the n-th child of the
  -- current node. For example,
  --                     addPoint(s,[2,3],p)
  -- would add the point p to the subspace s by going to the second child of
  -- the root and then the third child of that node. If the path does extend
  -- to the full depth of the tree, nodes are automatically added so that 
  -- the tree is of constant depth down any path. By not specifying the full
  -- path, new components could be added - e.g. for s from SubSpace(3,Float)
  --                     addPoint(s,[],p)
  -- would create a new child to the root (a new component in N-space) and
  -- extend a path to a leaf of depth 3 that points to the data held in p.
  -- The subspace s would now have a new component which has one child
  -- which, in turn, has one child (the leaf). The new component is then a 
  -- point.
 
  I    ==> Integer
  PI   ==> PositiveInteger
  NNI  ==> NonNegativeInteger
  L    ==> List
  B    ==> Boolean
  POINT ==> Point(R)
  PROP ==> SubSpaceComponentProperty()
  S ==> String
  O ==> OutputForm
  empty ==> nil  -- macro to ease conversion to new aggcat.spad
 
  Exports ==> SetCategory with
    leaf?          : % -> B
	++ leaf?(x) \undocumented
    root?          : % -> B
	++ root?(x) \undocumented
    internal?      : % -> B
	++ internal?(x) \undocumented
    new            : () -> %
	++ new() \undocumented
    subspace       : () -> %
	++ subspace() \undocumented
    birth          : % -> %       -- returns a pointer to the baby
	++ birth(x) \undocumented
    child          : (%,NNI) -> %
	++ child(x,n) \undocumented
    children       : % -> List %
	++ children(x) \undocumented
    numberOfChildren: % -> NNI
	++ numberOfChildren(x) \undocumented
    shallowCopy    : % -> %
	++ shallowCopy(x) \undocumented
    deepCopy       : % -> %
	++ deepCopy(x) \undocumented
    merge          : (%,%) -> %
      ++ merge(s1,s2) the subspaces s1 and s2 into a single subspace.
    merge          : List % -> %
      ++ merge(ls) a list of subspaces, ls, into one subspace.
    separate       : % -> List %
      ++ separate(s) makes each of the components of the \spadtype{SubSpace},
      ++ s, into a list of separate and distinct subspaces and returns
      ++ the list.
    addPoint       : (%,List NNI,POINT) -> %
      ++ addPoint(s,li,p) adds the 4 dimensional point, p, to the 3 
      ++ dimensional subspace, s. The list of non negative integers, li, 
      ++ dictates the path to follow, or, to look at it another way, 
      ++ points to the component in which the point is to be added.  It's 
      ++ length should range from 0 to \spad{n - 1} where n is the dimension 
      ++ of the subspace. If the length is \spad{n - 1}, then a specific 
      ++ lowest level component is being referenced.  If it is less than 
      ++ \spad{n - 1}, then some higher level component (0 indicates top 
      ++ level component) is being referenced and a component of that level 
      ++ with the desired point is created.  The subspace s is returned
      ++ with the additional point.
    addPoint2      : (%,POINT) -> %
      ++ addPoint2(s,p) adds the 4 dimensional point, p, to the 3 
      ++ dimensional subspace, s. 
      ++ The subspace s is returned with the additional point.
    addPointLast   : (%,%,POINT, NNI) -> %
      ++ addPointLast(s,s2,li,p) adds the 4 dimensional point, p, to the 3 
      ++ dimensional subspace, s. s2 point to the end of the subspace
      ++ s. n is the path in the s2 component.
      ++ The subspace s is returned with the additional point.
    modifyPoint    : (%,List NNI,POINT) -> %
      ++ modifyPoint(s,li,p) replaces an existing point in the 3 dimensional
      ++ subspace, s, with the 4 dimensional point, p.  The list of non 
      ++ negative integers, li, dictates the path to follow, or, to look at 
      ++ it another way, points to the component in which the existing point 
      ++ is to be modified.  An error message occurs if s is empty, otherwise
      ++ the subspace s is returned with the point modification.
    addPoint       : (%,List NNI,NNI) -> %
      ++ addPoint(s,li,i) adds the 4 dimensional point indicated by the
      ++ index location, i, to the 3 dimensional subspace, s. The list of 
      ++ non negative integers, li, dictates the path to follow, or, to 
      ++ look at it another way, points to the component in which the point 
      ++ is to be added.  It's length should range from 0 to \spad{n - 1} 
      ++ where n is the dimension of the subspace. If the length is 
      ++ \spad{n - 1}, then a specific lowest level component is being 
      ++ referenced.  If it is less than \spad{n - 1}, then some higher 
      ++ level component (0 indicates top level component) is being 
      ++ referenced and a component of that level with the desired point 
      ++ is created.  The subspace s is returned with the additional point.
    modifyPoint    : (%,List NNI,NNI) -> %
      ++ modifyPoint(s,li,i) replaces an existing point in the 3 dimensional
      ++ subspace, s, with the 4 dimensional point indicated by the index 
      ++ location, i.  The list of non negative integers, li, dictates 
      ++ the path to follow, or, to look at it another way, points to the 
      ++ component in which the existing point is to be modified.  An error
      ++ message occurs if s is empty, otherwise the subspace s is returned
      ++ with the point modification.
    addPoint       : (%,POINT) -> NNI
      ++ addPoint(s,p) adds the point, p, to the 3 dimensional subspace, s,
      ++ and returns the new total number of points in s.
    modifyPoint    : (%,NNI,POINT) -> %
      ++ modifyPoint(s,ind,p) modifies the point referenced by the index
      ++ location, ind, by replacing it with the point, p in the 3 dimensional
      ++ subspace, s.  An error message occurs if s is empty, otherwise the
      ++ subspace s is returned with the point modification.
 
    closeComponent : (%,List NNI,B)     -> %
      ++ closeComponent(s,li,b) sets the property of the component in the
      ++ 3 dimensional subspace, s, to be closed if b is true, or open if 
      ++ b is false.  The list of non negative integers, li, dictates the 
      ++ path to follow, or, to look at it another way, points to the 
      ++ component whose closed property is to be set.  The subspace, s, 
      ++ is returned with the component property modification.
    defineProperty : (%,List NNI,PROP)  -> %
      ++ defineProperty(s,li,p) defines the component property in the
      ++ 3 dimensional subspace, s, to be that of p, where p is of the
      ++ domain \spadtype{SubSpaceComponentProperty}.  The list of non 
      ++ negative integers, li, dictates the path to follow, or, to look 
      ++ at it another way, points to the component whose property is 
      ++ being defined.  The subspace, s, is returned with the component 
      ++ property definition.
    traverse       : (%,List NNI) -> %
      ++ traverse(s,li) follows the branch list of the 3 dimensional 
      ++ subspace, s, along the path dictated by the list of non negative
      ++ integers, li, which points to the component which has been
      ++ traversed to.  The subspace, s, is returned, where s is now
      ++ the subspace pointed to by li.
    extractPoint    : %  -> POINT
      ++ extractPoint(s) returns the point which is given by the current 
      ++ index location into the point data field of the 3 dimensional 
      ++ subspace s.
    extractIndex    : % -> NNI
      ++ extractIndex(s) returns a non negative integer which is the current 
      ++ index of the 3 dimensional subspace s.
    extractClosed   : %  -> B
      ++ extractClosed(s) returns the \spadtype{Boolean} value of the closed 
      ++ property for the indicated 3 dimensional subspace s.  If the 
      ++ property is closed, \spad{True} is returned, otherwise \spad{False}
      ++ is returned.
    extractProperty : %  -> PROP
      ++ extractProperty(s) returns the property of domain
      ++ \spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional
      ++ subspace s.
    level           : % -> NNI
      ++ level(s) returns a non negative integer which is the current 
      ++ level field of the indicated 3 dimensional subspace s.
    parent          : % -> %
      ++ parent(s) returns the subspace which is the parent of the indicated
      ++ 3 dimensional subspace s.  If s is the top level subspace an error
      ++ message is returned.
    pointData       : % -> L POINT
      ++ pointData(s) returns the list of points from the point data field
      ++ of the 3 dimensional subspace s.
 
  Implementation ==> add
    import String()

    Rep := Record(pt:POINT, index:NNI, property:PROP, _
                   childrenField:List %, _
                   lastChild: List %, _ 
                   levelField:NNI, _
                   pointDataField:L POINT, _
                   lastPoint: L POINT, _
                   noPoints: NNI, _
                   noChildren: NNI, _
                   parentField:List %) -- needn't be list but...base case?

    TELLWATT : String := "Non-null list: Please inform Stephen Watt"
 
    leaf? space ==  empty? children space
    root? space == (space.levelField = 0$NNI)
    internal? space == not (root? space and leaf? space)
 
    new() ==
      [point(empty())$POINT,0,new()$PROP,empty(),empty(),0,_
                                     empty(),empty(),0,0,empty()]
    subspace() == new()
 
    birth momma ==
      baby := new()
      baby.levelField := momma.levelField+1
      baby.parentField := [momma]
      if not empty?(lastKid := momma.lastChild) then
        not empty? rest lastKid => error TELLWATT
      if empty? lastKid
        then
          momma.childrenField := [baby]
          momma.lastChild := momma.childrenField
          momma.noChildren := 1
        else
          setrest!(lastKid,[baby])
          momma.lastChild := rest lastKid
          momma.noChildren := momma.noChildren + 1
      baby
 
    child(space,num) ==
      space.childrenField.num

    children space == space.childrenField
    numberOfChildren space == space.noChildren
 
    shallowCopy space ==
      node := new()
      node.pt         := space.pt
      node.index      := space.index
      node.property   := copy(space.property)
      node.levelField := space.levelField
      node.parentField := nil()
      if root? space then
        node.pointDataField := copy(space.pointDataField)
        node.lastPoint := tail(node.pointDataField)
        node.noPoints := space.noPoints
      node

    deepCopy space ==
      node := shallowCopy(space)
      leaf? space => node
      for c in children space repeat
        cc := deepCopy c
        cc.parentField := [node]
        node.childrenField := cons(cc,node.childrenField)
      node.childrenField := reverse!(node.childrenField)
      node.lastChild := tail node.childrenField
      node

    merge(s1,s2) ==
       ------------------ need to worry about reindexing s2 & parentField
      n1 : Rep := deepCopy s1
      n2 : Rep := deepCopy s2
      n1.childrenField := append(children n1,children n2)
      n1

    merge listOfSpaces ==
       ------------------ need to worry about reindexing & parentField
      empty? listOfSpaces => error "empty list passed as argument to merge"
           -- notice that the properties of the first subspace on the
           -- list are the ones that are inherited...hmmmm...
      space := deepCopy first listOfSpaces
      for s in rest listOfSpaces repeat
           -- because of the initial deepCopy, above, everything is
           -- deepCopied to be consistent...more hmmm...
        space.childrenField := append(space.childrenField,[deepCopy c for c in s.childrenField])
      space

    separate space ==
       ------------------ need to worry about reindexing & parentField
      spaceList := empty()
      for s in space.childrenField repeat
        spc:=shallowCopy space
        spc.childrenField:=[deepCopy s]
        spaceList := cons(spc,spaceList)
      spaceList
 
    addPoint(space:%,path:List NNI,point:POINT) ==
      if not empty?(lastPt := space.lastPoint) then
        not empty? rest lastPt => error TELLWATT
      if empty? lastPt
        then
          space.pointDataField := [point]
          space.lastPoint := space.pointDataField
        else
          setrest!(lastPt,[point])
          space.lastPoint := rest lastPt
      space.noPoints := space.noPoints + 1
      which := space.noPoints
      node := space
      depth : NNI := 0
      for i in path repeat
        node := child(node,i)
        depth := depth + 1
      for more in depth..(n-1) repeat
        node := birth node
      node.pt := point      -- will be obsolete field
      node.index := which
      space

    addPoint2(space:%,point:POINT) ==
      if not empty?(lastPt := space.lastPoint) then
        not empty? rest lastPt => error TELLWATT
      if empty? lastPt
        then
          space.pointDataField := [point]
          space.lastPoint := space.pointDataField
        else
          setrest!(lastPt,[point])
          space.lastPoint := rest lastPt
      space.noPoints := space.noPoints + 1
      which := space.noPoints
      node := space
      depth : NNI := 0
      node := birth node
      first := node
      for more in 1..n-1 repeat
        node := birth node
      node.pt := point      -- will be obsolete field
      node.index := which
      first

    addPointLast(space:%,node:%, point:POINT, depth:NNI) ==
      if not empty?(lastPt := space.lastPoint) then
        not empty? rest lastPt => error TELLWATT
      if empty? lastPt
        then
          space.pointDataField := [point]
          space.lastPoint := space.pointDataField
        else
          setrest!(lastPt,[point])
          space.lastPoint := rest lastPt
      space.noPoints := space.noPoints + 1
      which := space.noPoints
      if depth = 2 then node := child(node, 2)
      for more in depth..(n-1) repeat
        node := birth node
      node.pt := point      -- will be obsolete field
      node.index := which
      node -- space

    addPoint(space:%,path:List NNI,which:NNI) ==
      node := space
      depth : NNI := 0
      for i in path repeat
        node := child(node,i)
        depth := depth + 1
      for more in depth..(n-1) repeat
        node := birth node
      node.pt := space.pointDataField.which   -- will be obsolete field
      node.index := which
      space

    addPoint(space:%,point:POINT) ==
      root? space =>
        if not empty?(lastPt := space.lastPoint) then
          not empty? rest lastPt => error TELLWATT
        if empty? lastPt
          then
            space.pointDataField := [point]
            space.lastPoint := space.pointDataField
          else
            setrest!(lastPt,[point])
            space.lastPoint := rest lastPt
        space.noPoints := space.noPoints + 1
      error "You need to pass a top level SubSpace (level should be zero)"
 
    modifyPoint(space:%,path:List NNI,point:POINT) ==
      if not empty?(lastPt := space.lastPoint) then
        not empty? rest lastPt => error TELLWATT
      if empty? lastPt
        then
          space.pointDataField := [point]
          space.lastPoint := space.pointDataField
        else
          setrest!(lastPt,[point])
          space.lastPoint := rest lastPt
      space.noPoints := space.noPoints + 1
      which := space.noPoints
      node := space
      for i in path repeat
        node := child(node,i)
      node.pt := point       ---------- will be obsolete field
      node.index := which
      space

    modifyPoint(space:%,path:List NNI,which:NNI) ==
      node := space
      for i in path repeat
        node := child(node,i)
      node.pt := space.pointDataField.which       ---------- will be obsolete field
      node.index := which
      space

    modifyPoint(space:%,which:NNI,point:POINT) ==
      root? space =>
        space.pointDataField.which := point
        space
      error "You need to pass a top level SubSpace (level should be zero)"
 
    closeComponent(space,path,val) ==
      node := space
      for i in path repeat
        node := child(node,i)
      close(node.property,val)
      space

    defineProperty(space,path,prop) ==
      node := space
      for i in path repeat
        node := child(node,i)
      node.property := prop
      space
 
    traverse(space,path) ==
      for i in path repeat space := child(space,i)
      space

    extractPoint space ==
      node := space
      while not root? node repeat node := parent node
      (node.pointDataField).(space.index)
    extractIndex space == space.index
    extractClosed space == closed? space.property
    extractProperty space == space.property
 
    parent space ==
      empty? space.parentField => error "This is a top level SubSpace - it does not have a parent"
      first space.parentField
    pointData space == space.pointDataField
    level space == space.levelField
    s1 = s2 ==
        ------------ extra checks for list of point data
      (leaf? s1 and leaf? s2) =>
        (s1.pt = s2.pt) and (s1.property = s2.property) and (s1.levelField = s2.levelField)
      -- note that the ordering of children is important
      #s1.childrenField ~= #s2.childrenField => false
      and/[c1 = c2 for c1 in s1.childrenField for c2 in s2.childrenField]
       and (s1.property = s2.property) and (s1.levelField = s2.levelField)
    coerce(space:%):O ==
      hconcat([n::O,"-Space with depth of "::O,                     _
              (n - space.levelField)::O," and "::O,(s:=(#space.childrenField))::O,  _
              (s=1 => " component"::O;" components"::O)])

@
\section{package PTPACK PointPackage}
<<package PTPACK PointPackage>>=
)abbrev package PTPACK PointPackage
++ Description:
++ This package \undocumented
PointPackage(R:Ring):Exports == Implementation where
 
  POINT ==> Point(R)
  I    ==> Integer
  PI   ==> PositiveInteger
  NNI  ==> NonNegativeInteger
  L    ==> List
  B    ==> Boolean
 
  Exports == with
    xCoord       : POINT -> R
      ++ xCoord(pt) returns the first element of the point, pt,
      ++ although no assumptions are made as to the coordinate
      ++ system being used.  This function is defined for the
      ++ convenience of the user dealing with a Cartesian
      ++ coordinate system.
    yCoord       : POINT -> R
      ++ yCoord(pt) returns the second element of the point, pt,
      ++ although no assumptions are made as to the coordinate
      ++ system being used.  This function is defined for the
      ++ convenience of the user dealing with a Cartesian
      ++ coordinate system.
    zCoord       : POINT -> R
      ++ zCoord(pt) returns the third element of the point, pt,
      ++ although no assumptions are made as to the coordinate
      ++ system being used.  This function is defined for the
      ++ convenience of the user dealing with a Cartesian
      ++ or a cylindrical coordinate system.
    rCoord       : POINT -> R
      ++ rCoord(pt) returns the first element of the point, pt,
      ++ although no assumptions are made as to the coordinate
      ++ system being used.  This function is defined for the
      ++ convenience of the user dealing with a spherical
      ++ or a cylindrical coordinate system.
    thetaCoord   : POINT -> R
      ++ thetaCoord(pt) returns the second element of the point, pt,
      ++ although no assumptions are made as to the coordinate
      ++ system being used.  This function is defined for the
      ++ convenience of the user dealing with a spherical
      ++ or a cylindrical coordinate system.
    phiCoord     : POINT -> R
      ++ phiCoord(pt) returns the third element of the point, pt,
      ++ although no assumptions are made as to the coordinate
      ++ system being used.  This function is defined for the
      ++ convenience of the user dealing with a spherical
      ++ coordinate system.
    color        : POINT -> R
      ++ color(pt) returns the fourth element of the point, pt, 
      ++ although no assumptions are made with regards as to
      ++ how the components of higher dimensional points are
      ++ interpreted.  This function is defined for the
      ++ convenience of the user using specifically, color
      ++ to express a fourth dimension.
    hue : POINT -> R
      ++ hue(pt) returns the third element of the two dimensional point, pt,
      ++ although no assumptions are made with regards as to how the 
      ++ components of higher dimensional points are interpreted. This 
      ++ function is defined for the convenience of the user using 
      ++ specifically, hue to express a third dimension.
    shade : POINT -> R
      ++ shade(pt) returns the fourth element of the two dimensional 
      ++ point, pt, although no assumptions are made with regards as to 
      ++ how the components of higher dimensional points are interpreted.
      ++ This function is defined for the convenience of the user using 
      ++ specifically, shade to express a fourth dimension.
 
      -- 2D and 3D extraction of data
  Implementation ==> add
 
    xCoord p == elt(p,1)
    yCoord p == elt(p,2)
    zCoord p == elt(p,3)
    rCoord p == elt(p,1)
    thetaCoord p == elt(p,2)
    phiCoord p == elt(p,3)
    color p == 
      #p > 3 => p.4
      p.3
    hue p == elt(p,3)       -- 4D points in 2D using extra dimensions for palette information
    shade p == elt(p,4)     -- 4D points in 2D using extra dimensions for palette information

@
\section{package PTFUNC2 PointFunctions2}
<<package PTFUNC2 PointFunctions2>>=
)abbrev package PTFUNC2 PointFunctions2
++ Description:
++ This package \undocumented 
PointFunctions2(R1:Ring,R2:Ring):Exports == Implementation where
 
  Exports == with
    map : ((R1->R2),Point(R1)) -> Point(R2)
	++ map(f,p) \undocumented
 
  Implementation ==> add
    import Point(R1)
    import Point(R2)
 
    map(mapping,p) ==
      point([mapping p.(i::PositiveInteger) for i in minIndex(p)..maxIndex(p)])$Point(R2)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<category PTCAT PointCategory>>
<<domain POINT Point>>
<<domain COMPPROP SubSpaceComponentProperty>>
<<domain SUBSPACE SubSpace>>
<<package PTPACK PointPackage>>
<<package PTFUNC2 PointFunctions2>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}