1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra matfuns.spad}
\author{Clifton J. Williamson, Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package IMATLIN InnerMatrixLinearAlgebraFunctions}
<<package IMATLIN InnerMatrixLinearAlgebraFunctions>>=
)abbrev package IMATLIN InnerMatrixLinearAlgebraFunctions
++ Author: Clifton J. Williamson, P.Gianni
++ Date Created: 13 November 1989
++ Date Last Updated: September 1993
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R),
++ RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords: matrix, canonical forms, linear algebra
++ Examples:
++ References:
++ Description:
++ \spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package
++ which provides standard linear algebra functions on domains in
++ \spad{MatrixCategory}
InnerMatrixLinearAlgebraFunctions(R,Row,Col,M):_
Exports == Implementation where
R : Field
Row : FiniteLinearAggregate R
Col : FiniteLinearAggregate R
M : MatrixCategory(R,Row,Col)
I ==> Integer
Exports ==> with
rowEchelon: M -> M
++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m.
rank: M -> NonNegativeInteger
++ \spad{rank(m)} returns the rank of the matrix m.
nullity: M -> NonNegativeInteger
++ \spad{nullity(m)} returns the mullity of the matrix m. This is the
++ dimension of the null space of the matrix m.
if Col has shallowlyMutable then
nullSpace: M -> List Col
++ \spad{nullSpace(m)} returns a basis for the null space of the
++ matrix m.
determinant: M -> R
++ \spad{determinant(m)} returns the determinant of the matrix m.
++ an error message is returned if the matrix is not square.
generalizedInverse: M -> M
++ \spad{generalizedInverse(m)} returns the generalized (Moore--Penrose)
++ inverse of the matrix m, i.e. the matrix h such that
++ m*h*m=h, h*m*h=m, m*h and h*m are both symmetric matrices.
inverse: M -> Union(M,"failed")
++ \spad{inverse(m)} returns the inverse of the matrix m.
++ If the matrix is not invertible, "failed" is returned.
++ Error: if the matrix is not square.
Implementation ==> add
rowAllZeroes?: (M,I) -> Boolean
rowAllZeroes?(x,i) ==
-- determines if the ith row of x consists only of zeroes
-- internal function: no check on index i
for j in minColIndex(x)..maxColIndex(x) repeat
qelt(x,i,j) ~= 0 => return false
true
colAllZeroes?: (M,I) -> Boolean
colAllZeroes?(x,j) ==
-- determines if the ith column of x consists only of zeroes
-- internal function: no check on index j
for i in minRowIndex(x)..maxRowIndex(x) repeat
qelt(x,i,j) ~= 0 => return false
true
rowEchelon y ==
-- row echelon form via Gaussian elimination
x := copy y
minR := minRowIndex x; maxR := maxRowIndex x
minC := minColIndex x; maxC := maxColIndex x
i := minR
n: I := minR - 1
for j in minC..maxC repeat
i > maxR => return x
n := minR - 1
-- n = smallest k such that k >= i and x(k,j) ~= 0
for k in i..maxR repeat
if qelt(x,k,j) ~= 0 then leave (n := k)
n = minR - 1 => "no non-zeroes"
-- put nth row in ith position
if i ~= n then swapRows!(x,i,n)
-- divide ith row by its first non-zero entry
b := inv qelt(x,i,j)
qsetelt!(x,i,j,1)
for k in (j+1)..maxC repeat qsetelt!(x,i,k,b * qelt(x,i,k))
-- perform row operations so that jth column has only one 1
for k in minR..maxR repeat
if k ~= i and qelt(x,k,j) ~= 0 then
for k1 in (j+1)..maxC repeat
qsetelt!(x,k,k1,qelt(x,k,k1) - qelt(x,k,j) * qelt(x,i,k1))
qsetelt!(x,k,j,0)
-- increment i
i := i + 1
x
rank x ==
rk := nrows x
y :=
rh := ncols x
rk > rh =>
rk := rh
transpose x
copy x
y := rowEchelon y; i := maxRowIndex y
while positive? rk and rowAllZeroes?(y,i) repeat
i := i - 1
rk := (rk - 1) :: NonNegativeInteger
rk :: NonNegativeInteger
nullity x == (ncols x - rank x) :: NonNegativeInteger
if Col has shallowlyMutable then
nullSpace y ==
x := rowEchelon y
minR := minRowIndex x; maxR := maxRowIndex x
minC := minColIndex x; maxC := maxColIndex x
nrow := nrows x; ncol := ncols x
basis : List Col := nil()
rk := nrow; row := maxR
-- compute rank = # rows - # rows of all zeroes
while positive? rk and rowAllZeroes?(x,row) repeat
rk := (rk - 1) :: NonNegativeInteger
row := (row - 1) :: NonNegativeInteger
-- if maximal rank, return zero vector
ncol <= nrow and rk = ncol => [new(ncol,0)]
-- if rank = 0, return standard basis vectors
rk = 0 =>
for j in minC..maxC repeat
w : Col := new(ncol,0)
qsetelt!(w,j,1)
basis := cons(w,basis)
basis
-- v contains information about initial 1's in the rows of x
-- if the ith row has an initial 1 in the jth column, then
-- v.j = i; v.j = minR - 1, otherwise
v : IndexedOneDimensionalArray(I,minC) := new(ncol,minR - 1)
j : Integer
for i in minR..(minR + rk - 1) repeat
for j: free in minC.. while qelt(x,i,j) = 0 repeat j
qsetelt!(v,j,i)
j := maxC; l := minR + ncol - 1
while j >= minC repeat
w : Col := new(ncol,0)
-- if there is no row with an initial 1 in the jth column,
-- create a basis vector with a 1 in the jth row
if qelt(v,j) = minR - 1 then
colAllZeroes?(x,j) =>
qsetelt!(w,l,1)
basis := cons(w,basis)
for k in minC..(j-1) for ll in minR..(l-1) repeat
if qelt(v,k) ~= minR - 1 then
qsetelt!(w,ll,-qelt(x,qelt(v,k),j))
qsetelt!(w,l,1)
basis := cons(w,basis)
j := j - 1; l := l - 1
basis
determinant y ==
(ndim := nrows y) ~= (ncols y) =>
error "determinant: matrix must be square"
-- Gaussian Elimination
ndim = 1 => qelt(y,minRowIndex y,minColIndex y)
x := copy y
minR := minRowIndex x; maxR := maxRowIndex x
minC := minColIndex x; maxC := maxColIndex x
ans : R := 1
for i in minR..(maxR - 1) for j in minC..(maxC - 1) repeat
if qelt(x,i,j) = 0 then
rown := minR - 1
for k in (i+1)..maxR repeat
qelt(x,k,j) ~= 0 => leave (rown := k)
if rown = minR - 1 then return 0
swapRows!(x,i,rown); ans := -ans
ans := qelt(x,i,j) * ans; b := -inv qelt(x,i,j)
for l in (j+1)..maxC repeat qsetelt!(x,i,l,b * qelt(x,i,l))
for k: local in (i+1)..maxR repeat
if (b := qelt(x,k,j)) ~= 0 then
for l in (j+1)..maxC repeat
qsetelt!(x,k,l,qelt(x,k,l) + b * qelt(x,i,l))
qelt(x,maxR,maxC) * ans
generalizedInverse(x) ==
SUP:=SparseUnivariatePolynomial R
FSUP := Fraction SUP
VFSUP := Vector FSUP
MATCAT2 := MatrixCategoryFunctions2(R, Row, Col, M,
FSUP, VFSUP, VFSUP, Matrix FSUP)
MATCAT22 := MatrixCategoryFunctions2(FSUP, VFSUP, VFSUP, Matrix FSUP,
R, Row, Col, M)
y:= map(coerce(coerce(#1)$SUP)$(Fraction SUP),x)$MATCAT2
ty:=transpose y
yy:=ty*y
nc:=ncols yy
var:=monomial(1,1)$SUP ::(Fraction SUP)
yy:=inverse(yy+scalarMatrix(ncols yy,var))::Matrix(FSUP)*ty
map(elt(#1,0),yy)$MATCAT22
inverse x ==
(ndim := nrows x) ~= (ncols x) =>
error "inverse: matrix must be square"
ndim = 2 =>
ans2 : M := zero(ndim, ndim)
zero?(det := x(1,1)*x(2,2)-x(1,2)*x(2,1)) => "failed"
detinv := inv det
ans2(1,1) := x(2,2)*detinv
ans2(1,2) := -x(1,2)*detinv
ans2(2,1) := -x(2,1)*detinv
ans2(2,2) := x(1,1)*detinv
ans2
AB : M := zero(ndim,ndim + ndim)
minR := minRowIndex x; maxR := maxRowIndex x
minC := minColIndex x; maxC := maxColIndex x
kmin := minRowIndex AB; kmax := kmin + ndim - 1
lmin := minColIndex AB; lmax := lmin + ndim - 1
for i in minR..maxR for k in kmin..kmax repeat
for j in minC..maxC for l in lmin..lmax repeat
qsetelt!(AB,k,l,qelt(x,i,j))
qsetelt!(AB,k,lmin + ndim + k - kmin,1)
AB := rowEchelon AB
elt(AB,kmax,lmax) = 0 => "failed"
subMatrix(AB,kmin,kmax,lmin + ndim,lmax + ndim)
@
\section{package MATCAT2 MatrixCategoryFunctions2}
<<package MATCAT2 MatrixCategoryFunctions2>>=
)abbrev package MATCAT2 MatrixCategoryFunctions2
++ Author: Clifton J. Williamson
++ Date Created: 21 November 1989
++ Date Last Updated: 21 March 1994
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R),
++ RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Keywords: matrix, map, reduce
++ Examples:
++ References:
++ Description:
++ \spadtype{MatrixCategoryFunctions2} provides functions between two matrix
++ domains. The functions provided are \spadfun{map} and \spadfun{reduce}.
MatrixCategoryFunctions2(R1,Row1,Col1,M1,R2,Row2,Col2,M2):_
Exports == Implementation where
R1 : Ring
Row1 : FiniteLinearAggregate R1
Col1 : FiniteLinearAggregate R1
M1 : MatrixCategory(R1,Row1,Col1)
R2 : Ring
Row2 : FiniteLinearAggregate R2
Col2 : FiniteLinearAggregate R2
M2 : MatrixCategory(R2,Row2,Col2)
Exports ==> with
map: (R1 -> R2,M1) -> M2
++ \spad{map(f,m)} applies the function f to the elements of the matrix m.
map: (R1 -> Union(R2,"failed"),M1) -> Union(M2,"failed")
++ \spad{map(f,m)} applies the function f to the elements of the matrix m.
reduce: ((R1,R2) -> R2,M1,R2) -> R2
++ \spad{reduce(f,m,r)} returns a matrix n where
++ \spad{n[i,j] = f(m[i,j],r)} for all indices i and j.
Implementation ==> add
minr ==> minRowIndex
maxr ==> maxRowIndex
minc ==> minColIndex
maxc ==> maxColIndex
map(f:(R1->R2),m:M1):M2 ==
ans : M2 := new(nrows m,ncols m,0)
for i in minr(m)..maxr(m) for k in minr(ans)..maxr(ans) repeat
for j in minc(m)..maxc(m) for l in minc(ans)..maxc(ans) repeat
qsetelt!(ans,k,l,f qelt(m,i,j))
ans
map(f:(R1 -> (Union(R2,"failed"))),m:M1):Union(M2,"failed") ==
ans : M2 := new(nrows m,ncols m,0)
for i in minr(m)..maxr(m) for k in minr(ans)..maxr(ans) repeat
for j in minc(m)..maxc(m) for l in minc(ans)..maxc(ans) repeat
(r := f qelt(m,i,j)) = "failed" => return "failed"
qsetelt!(ans,k,l,r::R2)
ans
reduce(f,m,ident) ==
s := ident
for i in minr(m)..maxr(m) repeat
for j in minc(m)..maxc(m) repeat
s := f(qelt(m,i,j),s)
s
@
\section{package RMCAT2 RectangularMatrixCategoryFunctions2}
<<package RMCAT2 RectangularMatrixCategoryFunctions2>>=
)abbrev package RMCAT2 RectangularMatrixCategoryFunctions2
++ Author: Clifton J. Williamson
++ Date Created: 21 November 1989
++ Date Last Updated: 12 June 1991
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R),
++ RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Keywords: matrix, map, reduce
++ Examples:
++ References:
++ Description:
++ \spadtype{RectangularMatrixCategoryFunctions2} provides functions between
++ two matrix domains. The functions provided are \spadfun{map} and \spadfun{reduce}.
RectangularMatrixCategoryFunctions2(m,n,R1,Row1,Col1,M1,R2,Row2,Col2,M2):_
Exports == Implementation where
m,n : NonNegativeInteger
R1 : Ring
Row1 : DirectProductCategory(n, R1)
Col1 : DirectProductCategory(m, R1)
M1 : RectangularMatrixCategory(m,n,R1,Row1,Col1)
R2 : Ring
Row2 : DirectProductCategory(n, R2)
Col2 : DirectProductCategory(m, R2)
M2 : RectangularMatrixCategory(m,n,R2,Row2,Col2)
Exports ==> with
map: (R1 -> R2,M1) -> M2
++ \spad{map(f,m)} applies the function \spad{f} to the elements of the
++ matrix \spad{m}.
reduce: ((R1,R2) -> R2,M1,R2) -> R2
++ \spad{reduce(f,m,r)} returns a matrix \spad{n} where
++ \spad{n[i,j] = f(m[i,j],r)} for all indices spad{i} and \spad{j}.
Implementation ==> add
minr ==> minRowIndex
maxr ==> maxRowIndex
minc ==> minColIndex
maxc ==> maxColIndex
map(f,mat) ==
ans : M2 := new(m,n,0)$Matrix(R2) pretend M2
for i in minr(mat)..maxr(mat) for k in minr(ans)..maxr(ans) repeat
for j in minc(mat)..maxc(mat) for l in minc(ans)..maxc(ans) repeat
qsetelt!(ans pretend Matrix R2,k,l,f qelt(mat,i,j))
ans
reduce(f,mat,ident) ==
s := ident
for i in minr(mat)..maxr(mat) repeat
for j in minc(mat)..maxc(mat) repeat
s := f(qelt(mat,i,j),s)
s
@
\section{package IMATQF InnerMatrixQuotientFieldFunctions}
<<package IMATQF InnerMatrixQuotientFieldFunctions>>=
)abbrev package IMATQF InnerMatrixQuotientFieldFunctions
++ Author: Clifton J. Williamson
++ Date Created: 22 November 1989
++ Date Last Updated: 22 November 1989
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R), RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords: matrix, inverse, integral domain
++ Examples:
++ References:
++ Description:
++ \spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices
++ over an integral domain which involve the quotient field of that integral
++ domain. The functions rowEchelon and inverse return matrices with
++ entries in the quotient field.
InnerMatrixQuotientFieldFunctions(R,Row,Col,M,QF,Row2,Col2,M2):_
Exports == Implementation where
R : IntegralDomain
Row : FiniteLinearAggregate R
Col : FiniteLinearAggregate R
M : MatrixCategory(R,Row,Col)
QF : QuotientFieldCategory R
Row2 : FiniteLinearAggregate QF
Col2 : FiniteLinearAggregate QF
M2 : MatrixCategory(QF,Row2,Col2)
IMATLIN ==> InnerMatrixLinearAlgebraFunctions(QF,Row2,Col2,M2)
MATCAT2 ==> MatrixCategoryFunctions2(R,Row,Col,M,QF,Row2,Col2,M2)
CDEN ==> InnerCommonDenominator(R,QF,Col,Col2)
Exports ==> with
rowEchelon: M -> M2
++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m.
++ the result will have entries in the quotient field.
inverse: M -> Union(M2,"failed")
++ \spad{inverse(m)} returns the inverse of the matrix m.
++ If the matrix is not invertible, "failed" is returned.
++ Error: if the matrix is not square.
++ Note: the result will have entries in the quotient field.
if Col2 has shallowlyMutable then
nullSpace : M -> List Col
++ \spad{nullSpace(m)} returns a basis for the null space of the
++ matrix m.
Implementation ==> add
qfMat: M -> M2
qfMat m == map(#1 :: QF,m)$MATCAT2
rowEchelon m == rowEchelon(qfMat m)$IMATLIN
inverse m ==
(inv := inverse(qfMat m)$IMATLIN) case "failed" => "failed"
inv :: M2
if Col2 has shallowlyMutable then
nullSpace m ==
[clearDenominator(v)$CDEN for v in nullSpace(qfMat m)$IMATLIN]
@
\section{package MATLIN MatrixLinearAlgebraFunctions}
<<package MATLIN MatrixLinearAlgebraFunctions>>=
)abbrev package MATLIN MatrixLinearAlgebraFunctions
++ Author: Clifton J. Williamson, P.Gianni
++ Date Created: 13 November 1989
++ Date Last Updated: December 1992
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R),
++ RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords: matrix, canonical forms, linear algebra
++ Examples:
++ References:
++ Description:
++ \spadtype{MatrixLinearAlgebraFunctions} provides functions to compute
++ inverses and canonical forms.
MatrixLinearAlgebraFunctions(R,Row,Col,M):Exports == Implementation where
R : CommutativeRing
Row : FiniteLinearAggregate R
Col : FiniteLinearAggregate R
M : MatrixCategory(R,Row,Col)
I ==> Integer
Exports ==> with
determinant: M -> R
++ \spad{determinant(m)} returns the determinant of the matrix m.
++ an error message is returned if the matrix is not square.
minordet: M -> R
++ \spad{minordet(m)} computes the determinant of the matrix m using
++ minors. Error: if the matrix is not square.
elRow1! : (M,I,I) -> M
++ elRow1!(m,i,j) swaps rows i and j of matrix m : elementary operation
++ of first kind
elRow2! : (M,R,I,I) -> M
++ elRow2!(m,a,i,j) adds to row i a*row(m,j) : elementary operation of
++ second kind. (i ~=j)
elColumn2! : (M,R,I,I) -> M
++ elColumn2!(m,a,i,j) adds to column i a*column(m,j) : elementary
++ operation of second kind. (i ~=j)
if R has IntegralDomain then
rank: M -> NonNegativeInteger
++ \spad{rank(m)} returns the rank of the matrix m.
nullity: M -> NonNegativeInteger
++ \spad{nullity(m)} returns the mullity of the matrix m. This is
++ the dimension of the null space of the matrix m.
nullSpace: M -> List Col
++ \spad{nullSpace(m)} returns a basis for the null space of the
++ matrix m.
fractionFreeGauss! : M -> M
++ \spad{fractionFreeGauss(m)} performs the fraction
++ free gaussian elimination on the matrix m.
invertIfCan : M -> Union(M,"failed")
++ \spad{invertIfCan(m)} returns the inverse of m over R
adjoint : M -> Record(adjMat:M, detMat:R)
++ \spad{adjoint(m)} returns the ajoint matrix of m (i.e. the matrix
++ n such that m*n = determinant(m)*id) and the detrminant of m.
if R has EuclideanDomain then
rowEchelon: M -> M
++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m.
normalizedDivide: (R, R) -> Record(quotient:R, remainder:R)
++ normalizedDivide(n,d) returns a normalized quotient and
++ remainder such that consistently unique representatives
++ for the residue class are chosen, e.g. positive remainders
if R has Field then
inverse: M -> Union(M,"failed")
++ \spad{inverse(m)} returns the inverse of the matrix.
++ If the matrix is not invertible, "failed" is returned.
++ Error: if the matrix is not square.
Implementation ==> add
rowAllZeroes?: (M,I) -> Boolean
rowAllZeroes?(x,i) ==
-- determines if the ith row of x consists only of zeroes
-- internal function: no check on index i
for j in minColIndex(x)..maxColIndex(x) repeat
qelt(x,i,j) ~= 0 => return false
true
colAllZeroes?: (M,I) -> Boolean
colAllZeroes?(x,j) ==
-- determines if the ith column of x consists only of zeroes
-- internal function: no check on index j
for i in minRowIndex(x)..maxRowIndex(x) repeat
qelt(x,i,j) ~= 0 => return false
true
minorDet:(M,I,List I,I,PrimitiveArray(Union(R,"uncomputed")))-> R
minorDet(x,m,l,i,v) ==
z := v.m
z case R => z
ans : R := 0; rl : List I := nil()
j := first l; l := rest l; pos := true
minR := minRowIndex x; minC := minColIndex x;
repeat
if qelt(x,j + minR,i + minC) ~= 0 then
ans :=
md := minorDet(x,m - 2**(j :: NonNegativeInteger),_
concat!(reverse rl,l),i + 1,v) *_
qelt(x,j + minR,i + minC)
pos => ans + md
ans - md
null l =>
v.m := ans
return ans
pos := not pos; rl := cons(j,rl); j := first l; l := rest l
minordet x ==
(ndim := nrows x) ~= (ncols x) =>
error "determinant: matrix must be square"
-- minor expansion with (s---loads of) memory
n1 : I := ndim - 1
v : PrimitiveArray(Union(R,"uncomputed")) :=
new((2**ndim - 1) :: NonNegativeInteger,"uncomputed")
minR := minRowIndex x; maxC := maxColIndex x
for i in 0..n1 repeat
qsetelt!(v,(2**i - 1),qelt(x,i + minR,maxC))
minorDet(x, 2**ndim - 2, [i for i in 0..n1], 0, v)
-- elementary operation of first kind: exchange two rows --
elRow1!(m:M,i:I,j:I) : M ==
vec:=row(m,i)
setRow!(m,i,row(m,j))
setRow!(m,j,vec)
m
-- elementary operation of second kind: add to row i--
-- a*row j (i~=j) --
elRow2!(m : M,a:R,i:I,j:I) : M ==
vec:= map(a*#1,row(m,j))
vec:=map("+",row(m,i),vec)
setRow!(m,i,vec)
m
-- elementary operation of second kind: add to column i --
-- a*column j (i~=j) --
elColumn2!(m : M,a:R,i:I,j:I) : M ==
vec:= map(a*#1,column(m,j))
vec:=map("+",column(m,i),vec)
setColumn!(m,i,vec)
m
if R has IntegralDomain then
-- Fraction-Free Gaussian Elimination
fractionFreeGauss! x ==
(ndim := nrows x) = 1 => x
ans := b := 1$R
minR := minRowIndex x; maxR := maxRowIndex x
minC := minColIndex x; maxC := maxColIndex x
i := minR
for j in minC..maxC repeat
if qelt(x,i,j) = 0 then -- candidate for pivot = 0
rown := minR - 1
for k in (i+1)..maxR repeat
if qelt(x,k,j) ~= 0 then
rown := k -- found a pivot
leave
if rown > minR - 1 then
swapRows!(x,i,rown)
ans := -ans
(c := qelt(x,i,j)) = 0 => "next j" -- try next column
for k: local in (i+1)..maxR repeat
if qelt(x,k,j) = 0 then
for l in (j+1)..maxC repeat
qsetelt!(x,k,l,(c * qelt(x,k,l) exquo b) :: R)
else
pv := qelt(x,k,j)
qsetelt!(x,k,j,0)
for l in (j+1)..maxC repeat
val := c * qelt(x,k,l) - pv * qelt(x,i,l)
qsetelt!(x,k,l,(val exquo b) :: R)
b := c
(i := i+1)>maxR => leave
if ans=-1 then
lasti := i-1
for j in 1..maxC repeat x(lasti, j) := -x(lasti,j)
x
--
lastStep(x:M) : M ==
ndim := nrows x
minR := minRowIndex x; maxR := maxRowIndex x
minC := minColIndex x; maxC := minC+ndim -1
exCol:=maxColIndex x
det:=x(maxR,maxC)
maxR1:=maxR-1
maxC1:=maxC+1
minC1:=minC+1
iRow:=maxR
iCol:=maxC-1
for i in maxR1..1 by -1 repeat
for j in maxC1..exCol repeat
ss:=+/[x(i,iCol+k)*x(i+k,j) for k in 1..(maxR-i)]
x(i,j) := _exquo((det * x(i,j) - ss),x(i,iCol))::R
iCol:=iCol-1
subMatrix(x,minR,maxR,maxC1,exCol)
invertIfCan(y) ==
(nr:=nrows y) ~= (ncols y) =>
error "invertIfCan: matrix must be square"
adjRec := adjoint y
(den:=recip(adjRec.detMat)) case "failed" => "failed"
den::R * adjRec.adjMat
adjoint(y) ==
(nr:=nrows y) ~= (ncols y) => error "adjoint: matrix must be square"
maxR := maxRowIndex y
maxC := maxColIndex y
x := horizConcat(copy y,scalarMatrix(nr,1$R))
ffr:= fractionFreeGauss!(x)
det:=ffr(maxR,maxC)
[lastStep(ffr),det]
if R has Field then
VR ==> Vector R
IMATLIN ==> InnerMatrixLinearAlgebraFunctions(R,Row,Col,M)
MMATLIN ==> InnerMatrixLinearAlgebraFunctions(R,VR,VR,Matrix R)
FLA2 ==> FiniteLinearAggregateFunctions2(R, VR, R, Col)
MAT2 ==> MatrixCategoryFunctions2(R,Row,Col,M,R,VR,VR,Matrix R)
rowEchelon y == rowEchelon(y)$IMATLIN
rank y == rank(y)$IMATLIN
nullity y == nullity(y)$IMATLIN
determinant y == determinant(y)$IMATLIN
inverse y == inverse(y)$IMATLIN
if Col has shallowlyMutable then
nullSpace y == nullSpace(y)$IMATLIN
else
nullSpace y ==
[map(#1, v)$FLA2 for v in nullSpace(map(#1, y)$MAT2)$MMATLIN]
else if R has IntegralDomain then
QF ==> Fraction R
Row2 ==> Vector QF
Col2 ==> Vector QF
M2 ==> Matrix QF
IMATQF ==> InnerMatrixQuotientFieldFunctions(R,Row,Col,M,QF,Row2,Col2,M2)
nullSpace m == nullSpace(m)$IMATQF
determinant y ==
(nrows y) ~= (ncols y) => error "determinant: matrix must be square"
fm:=fractionFreeGauss!(copy y)
fm(maxRowIndex fm,maxColIndex fm)
rank x ==
y :=
(rk := nrows x) > (rh := ncols x) =>
rk := rh
transpose x
copy x
y := fractionFreeGauss! y
i := maxRowIndex y
while positive? rk and rowAllZeroes?(y,i) repeat
i := i - 1
rk := (rk - 1) :: NonNegativeInteger
rk :: NonNegativeInteger
nullity x == (ncols x - rank x) :: NonNegativeInteger
if R has EuclideanDomain then
if R has IntegerNumberSystem then
normalizedDivide(n:R, d:R):Record(quotient:R, remainder:R) ==
qr := divide(n, d)
qr.remainder >= 0 => qr
positive? d =>
qr.remainder := qr.remainder + d
qr.quotient := qr.quotient - 1
qr
qr.remainder := qr.remainder - d
qr.quotient := qr.quotient + 1
qr
else
normalizedDivide(n:R, d:R):Record(quotient:R, remainder:R) ==
divide(n, d)
rowEchelon y ==
x := copy y
minR := minRowIndex x; maxR := maxRowIndex x
minC := minColIndex x; maxC := maxColIndex x
n := minR - 1
i := minR
for j in minC..maxC repeat
if i > maxR then leave x
n := minR - 1
xnj: R
for k in i..maxR repeat
if not zero?(xkj:=qelt(x,k,j)) and ((n = minR - 1) _
or sizeLess?(xkj,xnj)) then
n := k
xnj := xkj
n = minR - 1 => "next j"
swapRows!(x,i,n)
for k in (i+1)..maxR repeat
qelt(x,k,j) = 0 => "next k"
aa := extendedEuclidean(qelt(x,i,j),qelt(x,k,j))
(a,b,d) := (aa.coef1,aa.coef2,aa.generator)
b1 := (qelt(x,i,j) exquo d) :: R
a1 := (qelt(x,k,j) exquo d) :: R
-- a*b1+a1*b = 1
for k1 in (j+1)..maxC repeat
val1 := a * qelt(x,i,k1) + b * qelt(x,k,k1)
val2 := -a1 * qelt(x,i,k1) + b1 * qelt(x,k,k1)
qsetelt!(x,i,k1,val1); qsetelt!(x,k,k1,val2)
qsetelt!(x,i,j,d); qsetelt!(x,k,j,0)
un := unitNormal qelt(x,i,j)
qsetelt!(x,i,j,un.canonical)
if not one?(un.associate) then for jj in (j+1)..maxC repeat
qsetelt!(x,i,jj,un.associate * qelt(x,i,jj))
xij := qelt(x,i,j)
for k in minR..(i-1) repeat
qelt(x,k,j) = 0 => "next k"
qr := normalizedDivide(qelt(x,k,j), xij)
qsetelt!(x,k,j,qr.remainder)
for k1 in (j+1)..maxC repeat
qsetelt!(x,k,k1,qelt(x,k,k1) - qr.quotient * qelt(x,i,k1))
i := i + 1
x
else determinant x == minordet x
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
-- This file and MATRIX SPAD must be compiled in bootstrap mode.
<<package IMATLIN InnerMatrixLinearAlgebraFunctions>>
<<package MATCAT2 MatrixCategoryFunctions2>>
<<package RMCAT2 RectangularMatrixCategoryFunctions2>>
<<package IMATQF InnerMatrixQuotientFieldFunctions>>
<<package MATLIN MatrixLinearAlgebraFunctions>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|