aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/matfuns.spad.pamphlet
blob: 2f42249c1d56a42cdb3153814a0554d50638e635 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra matfuns.spad}
\author{Clifton J. Williamson, Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package IMATLIN InnerMatrixLinearAlgebraFunctions}
<<package IMATLIN InnerMatrixLinearAlgebraFunctions>>=
)abbrev package IMATLIN InnerMatrixLinearAlgebraFunctions
++ Author: Clifton J. Williamson, P.Gianni
++ Date Created: 13 November 1989
++ Date Last Updated: September 1993
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R),
++    RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords: matrix, canonical forms, linear algebra
++ Examples:
++ References:
++ Description:
++   \spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package
++   which provides standard linear algebra functions on domains in
++   \spad{MatrixCategory}
InnerMatrixLinearAlgebraFunctions(R,Row,Col,M):_
             Exports == Implementation where
  R   : Field
  Row : FiniteLinearAggregate R
  Col : FiniteLinearAggregate R
  M   : MatrixCategory(R,Row,Col)
  I ==> Integer

  Exports ==> with
    rowEchelon: M -> M
      ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m.
    rank: M -> NonNegativeInteger
      ++ \spad{rank(m)} returns the rank of the matrix m.
    nullity: M -> NonNegativeInteger
      ++ \spad{nullity(m)} returns the mullity of the matrix m. This is the
      ++ dimension of the null space of the matrix m.
    if Col has shallowlyMutable then
      nullSpace: M -> List Col
        ++ \spad{nullSpace(m)} returns a basis for the null space of the
        ++ matrix m.
    determinant: M -> R
      ++ \spad{determinant(m)} returns the determinant of the matrix m.
      ++ an error message is returned if the matrix is not square.
    generalizedInverse: M -> M
      ++ \spad{generalizedInverse(m)} returns the generalized (Moore--Penrose)
      ++ inverse of the matrix m, i.e. the matrix h such that
      ++ m*h*m=h, h*m*h=m, m*h and h*m are both symmetric matrices.
    inverse: M -> Union(M,"failed")
      ++ \spad{inverse(m)} returns the inverse of the matrix m.
      ++ If the matrix is not invertible, "failed" is returned.
      ++ Error: if the matrix is not square.

  Implementation ==> add

    rowAllZeroes?: (M,I) -> Boolean
    rowAllZeroes?(x,i) ==
      -- determines if the ith row of x consists only of zeroes
      -- internal function: no check on index i
      for j in minColIndex(x)..maxColIndex(x) repeat
        qelt(x,i,j) ~= 0 => return false
      true

    colAllZeroes?: (M,I) -> Boolean
    colAllZeroes?(x,j) ==
      -- determines if the ith column of x consists only of zeroes
      -- internal function: no check on index j
      for i in minRowIndex(x)..maxRowIndex(x) repeat
        qelt(x,i,j) ~= 0 => return false
      true

    rowEchelon y ==
      -- row echelon form via Gaussian elimination
      x := copy y
      minR := minRowIndex x; maxR := maxRowIndex x
      minC := minColIndex x; maxC := maxColIndex x
      i := minR
      n: I := minR - 1
      for j in minC..maxC repeat
        i > maxR => return x
        n := minR - 1
        -- n = smallest k such that k >= i and x(k,j) ~= 0
        for k in i..maxR repeat
          if qelt(x,k,j) ~= 0 then leave (n := k)
        n = minR - 1 => "no non-zeroes"
        -- put nth row in ith position
        if i ~= n then swapRows!(x,i,n)
        -- divide ith row by its first non-zero entry
        b := inv qelt(x,i,j)
        qsetelt!(x,i,j,1)
        for k in (j+1)..maxC repeat qsetelt!(x,i,k,b * qelt(x,i,k))
        -- perform row operations so that jth column has only one 1
        for k in minR..maxR repeat
          if k ~= i and qelt(x,k,j) ~= 0 then
            for k1 in (j+1)..maxC repeat
              qsetelt!(x,k,k1,qelt(x,k,k1) - qelt(x,k,j) * qelt(x,i,k1))
            qsetelt!(x,k,j,0)
        -- increment i
        i := i + 1
      x

    rank x ==
      rk := nrows x
      y :=
        rh := ncols x
        rk > rh  =>
          rk := rh
          transpose x
        copy x
      y := rowEchelon y; i := maxRowIndex y
      while positive? rk and rowAllZeroes?(y,i) repeat
        i := i - 1
        rk := (rk - 1) :: NonNegativeInteger
      rk :: NonNegativeInteger

    nullity x == (ncols x - rank x) :: NonNegativeInteger

    if Col has shallowlyMutable then

      nullSpace y ==
        x := rowEchelon y
        minR := minRowIndex x; maxR := maxRowIndex x
        minC := minColIndex x; maxC := maxColIndex x
        nrow := nrows x; ncol := ncols x
        basis : List Col := nil()
        rk := nrow; row := maxR
        -- compute rank = # rows - # rows of all zeroes
        while positive? rk and rowAllZeroes?(x,row) repeat
          rk := (rk - 1) :: NonNegativeInteger
          row := (row - 1) :: NonNegativeInteger
        -- if maximal rank, return zero vector
        ncol <= nrow and rk = ncol => [new(ncol,0)]
        -- if rank = 0, return standard basis vectors
        rk = 0 =>
          for j in minC..maxC repeat
            w : Col := new(ncol,0)
            qsetelt!(w,j,1)
            basis := cons(w,basis)
          basis
        -- v contains information about initial 1's in the rows of x
        -- if the ith row has an initial 1 in the jth column, then
        -- v.j = i; v.j = minR - 1, otherwise
        v : IndexedOneDimensionalArray(I,minC) := new(ncol,minR - 1)
        j : Integer
        for i in minR..(minR + rk - 1) repeat
          for j: free in minC.. while qelt(x,i,j) = 0 repeat j
          qsetelt!(v,j,i)
        j := maxC; l := minR + ncol - 1
        while j >= minC repeat
          w : Col := new(ncol,0)
          -- if there is no row with an initial 1 in the jth column,
          -- create a basis vector with a 1 in the jth row
          if qelt(v,j) = minR - 1 then
            colAllZeroes?(x,j) =>
              qsetelt!(w,l,1)
              basis := cons(w,basis)
            for k in minC..(j-1) for ll in minR..(l-1) repeat
              if qelt(v,k) ~= minR - 1 then
                qsetelt!(w,ll,-qelt(x,qelt(v,k),j))
            qsetelt!(w,l,1)
            basis := cons(w,basis)
          j := j - 1; l := l - 1
        basis

    determinant y ==
      (ndim := nrows y) ~= (ncols y) =>
        error "determinant: matrix must be square"
      -- Gaussian Elimination
      ndim = 1 => qelt(y,minRowIndex y,minColIndex y)
      x := copy y
      minR := minRowIndex x; maxR := maxRowIndex x
      minC := minColIndex x; maxC := maxColIndex x
      ans : R := 1
      for i in minR..(maxR - 1) for j in minC..(maxC - 1) repeat
        if qelt(x,i,j) = 0 then
          rown := minR - 1
          for k in (i+1)..maxR repeat
            qelt(x,k,j) ~= 0 => leave (rown := k)
          if rown = minR - 1 then return 0
          swapRows!(x,i,rown); ans := -ans
        ans := qelt(x,i,j) * ans; b := -inv qelt(x,i,j)
        for l in (j+1)..maxC repeat qsetelt!(x,i,l,b * qelt(x,i,l))
        for k: local in (i+1)..maxR repeat
          if (b := qelt(x,k,j)) ~= 0 then
            for l in (j+1)..maxC repeat
              qsetelt!(x,k,l,qelt(x,k,l) + b * qelt(x,i,l))
      qelt(x,maxR,maxC) * ans

    generalizedInverse(x) ==
      SUP:=SparseUnivariatePolynomial R
      FSUP := Fraction SUP
      VFSUP := Vector FSUP
      MATCAT2 := MatrixCategoryFunctions2(R, Row, Col, M,
                   FSUP, VFSUP, VFSUP, Matrix FSUP)
      MATCAT22 := MatrixCategoryFunctions2(FSUP, VFSUP, VFSUP, Matrix FSUP,
                   R, Row, Col, M)
      y:= map(coerce(coerce(#1)$SUP)$(Fraction SUP),x)$MATCAT2
      ty:=transpose y
      yy:=ty*y
      nc:=ncols yy
      var:=monomial(1,1)$SUP ::(Fraction SUP)
      yy:=inverse(yy+scalarMatrix(ncols yy,var))::Matrix(FSUP)*ty
      map(elt(#1,0),yy)$MATCAT22

    inverse x ==
      (ndim := nrows x) ~= (ncols x) =>
        error "inverse: matrix must be square"
      ndim = 2 =>
         ans2 : M := zero(ndim, ndim)
         zero?(det :=  x(1,1)*x(2,2)-x(1,2)*x(2,1)) => "failed"
         detinv := inv det
         ans2(1,1) := x(2,2)*detinv
         ans2(1,2) := -x(1,2)*detinv
         ans2(2,1) := -x(2,1)*detinv
         ans2(2,2) := x(1,1)*detinv
         ans2
      AB : M := zero(ndim,ndim + ndim)
      minR := minRowIndex x; maxR := maxRowIndex x
      minC := minColIndex x; maxC := maxColIndex x
      kmin := minRowIndex AB; kmax := kmin + ndim - 1
      lmin := minColIndex AB; lmax := lmin + ndim - 1
      for i in minR..maxR for k in kmin..kmax repeat
        for j in minC..maxC for l in lmin..lmax repeat
          qsetelt!(AB,k,l,qelt(x,i,j))
        qsetelt!(AB,k,lmin + ndim + k - kmin,1)
      AB := rowEchelon AB
      elt(AB,kmax,lmax) = 0 => "failed"
      subMatrix(AB,kmin,kmax,lmin + ndim,lmax + ndim)

@
\section{package MATCAT2 MatrixCategoryFunctions2}
<<package MATCAT2 MatrixCategoryFunctions2>>=
)abbrev package MATCAT2 MatrixCategoryFunctions2
++ Author: Clifton J. Williamson
++ Date Created: 21 November 1989
++ Date Last Updated: 21 March 1994
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R),
++    RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Keywords: matrix, map, reduce
++ Examples:
++ References:
++ Description:
++   \spadtype{MatrixCategoryFunctions2} provides functions between two matrix
++   domains.  The functions provided are \spadfun{map} and \spadfun{reduce}.
MatrixCategoryFunctions2(R1,Row1,Col1,M1,R2,Row2,Col2,M2):_
         Exports == Implementation where
  R1   : Ring
  Row1 : FiniteLinearAggregate R1
  Col1 : FiniteLinearAggregate R1
  M1   : MatrixCategory(R1,Row1,Col1)
  R2   : Ring
  Row2 : FiniteLinearAggregate R2
  Col2 : FiniteLinearAggregate R2
  M2   : MatrixCategory(R2,Row2,Col2)

  Exports ==> with
    map: (R1 -> R2,M1) -> M2
      ++ \spad{map(f,m)} applies the function f to the elements of the matrix m.
    map: (R1 -> Union(R2,"failed"),M1) -> Union(M2,"failed")
      ++ \spad{map(f,m)} applies the function f to the elements of the matrix m.
    reduce: ((R1,R2) -> R2,M1,R2) -> R2
      ++ \spad{reduce(f,m,r)} returns a matrix n where
      ++ \spad{n[i,j] = f(m[i,j],r)} for all indices i and j.

  Implementation ==> add
    minr ==> minRowIndex
    maxr ==> maxRowIndex
    minc ==> minColIndex
    maxc ==> maxColIndex

    map(f:(R1->R2),m:M1):M2 ==
      ans : M2 := new(nrows m,ncols m,0)
      for i in minr(m)..maxr(m) for k in minr(ans)..maxr(ans) repeat
        for j in minc(m)..maxc(m) for l in minc(ans)..maxc(ans) repeat
          qsetelt!(ans,k,l,f qelt(m,i,j))
      ans

    map(f:(R1 -> (Union(R2,"failed"))),m:M1):Union(M2,"failed") ==
      ans : M2 := new(nrows m,ncols m,0)
      for i in minr(m)..maxr(m) for k in minr(ans)..maxr(ans) repeat
        for j in minc(m)..maxc(m) for l in minc(ans)..maxc(ans) repeat
          (r := f qelt(m,i,j)) = "failed" => return "failed"
          qsetelt!(ans,k,l,r::R2)
      ans

    reduce(f,m,ident) ==
      s := ident
      for i in minr(m)..maxr(m) repeat
       for j in minc(m)..maxc(m) repeat
         s := f(qelt(m,i,j),s)
      s

@
\section{package RMCAT2 RectangularMatrixCategoryFunctions2}
<<package RMCAT2 RectangularMatrixCategoryFunctions2>>=
)abbrev package RMCAT2 RectangularMatrixCategoryFunctions2
++ Author: Clifton J. Williamson
++ Date Created: 21 November 1989
++ Date Last Updated: 12 June 1991
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R),
++    RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Keywords: matrix, map, reduce
++ Examples:
++ References:
++ Description:
++ \spadtype{RectangularMatrixCategoryFunctions2} provides functions between
++ two matrix domains.  The functions provided are \spadfun{map} and \spadfun{reduce}.

RectangularMatrixCategoryFunctions2(m,n,R1,Row1,Col1,M1,R2,Row2,Col2,M2):_
         Exports == Implementation where
  m,n  : NonNegativeInteger
  R1   : Ring
  Row1 : DirectProductCategory(n, R1)
  Col1 : DirectProductCategory(m, R1)
  M1   : RectangularMatrixCategory(m,n,R1,Row1,Col1)
  R2   : Ring
  Row2 : DirectProductCategory(n, R2)
  Col2 : DirectProductCategory(m, R2)
  M2   : RectangularMatrixCategory(m,n,R2,Row2,Col2)

  Exports ==> with
    map: (R1 -> R2,M1) -> M2
      ++ \spad{map(f,m)} applies the function \spad{f} to the elements of the
      ++ matrix \spad{m}.
    reduce: ((R1,R2) -> R2,M1,R2) -> R2
      ++ \spad{reduce(f,m,r)} returns a matrix \spad{n} where
      ++ \spad{n[i,j] = f(m[i,j],r)} for all indices spad{i} and \spad{j}.

  Implementation ==> add
    minr ==> minRowIndex
    maxr ==> maxRowIndex
    minc ==> minColIndex
    maxc ==> maxColIndex

    map(f,mat) ==
      ans : M2 := new(m,n,0)$Matrix(R2) pretend M2
      for i in minr(mat)..maxr(mat) for k in minr(ans)..maxr(ans) repeat
        for j in minc(mat)..maxc(mat) for l in minc(ans)..maxc(ans) repeat
          qsetelt!(ans pretend Matrix R2,k,l,f qelt(mat,i,j))
      ans

    reduce(f,mat,ident) ==
      s := ident
      for i in minr(mat)..maxr(mat) repeat
       for j in minc(mat)..maxc(mat) repeat
         s := f(qelt(mat,i,j),s)
      s

@
\section{package IMATQF InnerMatrixQuotientFieldFunctions}
<<package IMATQF InnerMatrixQuotientFieldFunctions>>=
)abbrev package IMATQF InnerMatrixQuotientFieldFunctions
++ Author: Clifton J. Williamson
++ Date Created: 22 November 1989
++ Date Last Updated: 22 November 1989
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R), RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords: matrix, inverse, integral domain
++ Examples:
++ References:
++ Description:
++   \spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices
++   over an integral domain which involve the quotient field of that integral
++   domain.  The functions rowEchelon and inverse return matrices with
++   entries in the quotient field.
InnerMatrixQuotientFieldFunctions(R,Row,Col,M,QF,Row2,Col2,M2):_
         Exports == Implementation where
  R    : IntegralDomain
  Row  : FiniteLinearAggregate R
  Col  : FiniteLinearAggregate R
  M    : MatrixCategory(R,Row,Col)
  QF   : QuotientFieldCategory R
  Row2 : FiniteLinearAggregate QF
  Col2 : FiniteLinearAggregate QF
  M2   : MatrixCategory(QF,Row2,Col2)
  IMATLIN ==> InnerMatrixLinearAlgebraFunctions(QF,Row2,Col2,M2)
  MATCAT2 ==> MatrixCategoryFunctions2(R,Row,Col,M,QF,Row2,Col2,M2)
  CDEN    ==> InnerCommonDenominator(R,QF,Col,Col2)

  Exports ==> with
      rowEchelon: M -> M2
        ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m.
        ++ the result will have entries in the quotient field.
      inverse: M -> Union(M2,"failed")
        ++ \spad{inverse(m)} returns the inverse of the matrix m.
        ++ If the matrix is not invertible, "failed" is returned.
        ++ Error: if the matrix is not square.
        ++ Note: the result will have entries in the quotient field.
      if Col2 has shallowlyMutable then
        nullSpace : M -> List Col
          ++ \spad{nullSpace(m)} returns a basis for the null space of the
          ++ matrix m.
  Implementation ==> add

    qfMat: M -> M2
    qfMat m == map(#1 :: QF,m)$MATCAT2

    rowEchelon m == rowEchelon(qfMat m)$IMATLIN
    inverse m ==
      (inv := inverse(qfMat m)$IMATLIN) case "failed" => "failed"
      inv :: M2

    if Col2 has shallowlyMutable then
      nullSpace m ==
        [clearDenominator(v)$CDEN for v in nullSpace(qfMat m)$IMATLIN]

@
\section{package MATLIN MatrixLinearAlgebraFunctions}
<<package MATLIN MatrixLinearAlgebraFunctions>>=
)abbrev package MATLIN MatrixLinearAlgebraFunctions
++ Author: Clifton J. Williamson, P.Gianni
++ Date Created: 13 November 1989
++ Date Last Updated: December 1992
++ Basic Operations:
++ Related Domains: IndexedMatrix(R,minRow,minCol), Matrix(R),
++    RectangularMatrix(n,m,R), SquareMatrix(n,R)
++ Also See:
++ AMS Classifications:
++ Keywords: matrix, canonical forms, linear algebra
++ Examples:
++ References:
++ Description:
++   \spadtype{MatrixLinearAlgebraFunctions} provides functions to compute
++   inverses and canonical forms.
MatrixLinearAlgebraFunctions(R,Row,Col,M):Exports == Implementation where
  R   : CommutativeRing
  Row : FiniteLinearAggregate R
  Col : FiniteLinearAggregate R
  M   : MatrixCategory(R,Row,Col)
  I ==> Integer

  Exports ==> with

    determinant: M -> R
      ++ \spad{determinant(m)} returns the determinant of the matrix m.
      ++ an error message is returned if the matrix is not square.
    minordet: M -> R
      ++ \spad{minordet(m)} computes the determinant of the matrix m using
      ++ minors. Error: if the matrix is not square.
    elRow1!       :   (M,I,I)         ->  M
      ++ elRow1!(m,i,j) swaps rows i and j of matrix m : elementary operation
      ++ of first kind
    elRow2!       :  (M,R,I,I)        ->  M
      ++ elRow2!(m,a,i,j)  adds to row i a*row(m,j) : elementary operation of
      ++ second kind. (i ~=j)
    elColumn2!    :  (M,R,I,I)        ->  M
      ++ elColumn2!(m,a,i,j)  adds to column i a*column(m,j) : elementary
      ++ operation of second kind. (i ~=j)

    if R has IntegralDomain then
      rank: M -> NonNegativeInteger
        ++ \spad{rank(m)} returns the rank of the matrix m.
      nullity: M -> NonNegativeInteger
        ++ \spad{nullity(m)} returns the mullity of the matrix m. This is
        ++ the dimension of the null space of the matrix m.
      nullSpace: M -> List Col
        ++ \spad{nullSpace(m)} returns a basis for the null space of the
        ++ matrix m.
      fractionFreeGauss! : M -> M
        ++ \spad{fractionFreeGauss(m)} performs the fraction
        ++ free gaussian  elimination on the matrix m.
      invertIfCan : M -> Union(M,"failed")
        ++ \spad{invertIfCan(m)} returns the inverse of m over R
      adjoint : M -> Record(adjMat:M, detMat:R)
        ++ \spad{adjoint(m)} returns the ajoint matrix of m (i.e. the matrix
        ++ n such that m*n = determinant(m)*id) and the detrminant of m.

    if R has EuclideanDomain then
      rowEchelon: M -> M
        ++ \spad{rowEchelon(m)} returns the row echelon form of the matrix m.

      normalizedDivide: (R, R) -> Record(quotient:R, remainder:R)
        ++ normalizedDivide(n,d) returns a normalized quotient and
        ++ remainder such that consistently unique representatives
        ++ for the residue class are chosen, e.g. positive remainders

    if R has Field then
      inverse: M -> Union(M,"failed")
        ++ \spad{inverse(m)} returns the inverse of the matrix.
        ++ If the matrix is not invertible, "failed" is returned.
        ++ Error: if the matrix is not square.

  Implementation ==> add

    rowAllZeroes?: (M,I) -> Boolean
    rowAllZeroes?(x,i) ==
      -- determines if the ith row of x consists only of zeroes
      -- internal function: no check on index i
      for j in minColIndex(x)..maxColIndex(x) repeat
        qelt(x,i,j) ~= 0 => return false
      true

    colAllZeroes?: (M,I) -> Boolean
    colAllZeroes?(x,j) ==
      -- determines if the ith column of x consists only of zeroes
      -- internal function: no check on index j
      for i in minRowIndex(x)..maxRowIndex(x) repeat
        qelt(x,i,j) ~= 0 => return false
      true

    minorDet:(M,I,List I,I,PrimitiveArray(Union(R,"uncomputed")))-> R
    minorDet(x,m,l,i,v) ==
      z := v.m
      z case R => z
      ans : R := 0; rl : List I := nil()
      j := first l; l := rest l; pos := true
      minR := minRowIndex x; minC := minColIndex x;
      repeat
        if qelt(x,j + minR,i + minC) ~= 0 then
          ans :=
            md := minorDet(x,m - 2**(j :: NonNegativeInteger),_
                           concat!(reverse rl,l),i + 1,v) *_
                           qelt(x,j + minR,i + minC)
            pos => ans + md
            ans - md
        null l =>
          v.m := ans
          return ans
        pos := not pos; rl := cons(j,rl); j := first l; l := rest l

    minordet x ==
      (ndim := nrows x) ~= (ncols x) =>
        error "determinant: matrix must be square"
      -- minor expansion with (s---loads of) memory
      n1 : I := ndim - 1
      v : PrimitiveArray(Union(R,"uncomputed")) :=
           new((2**ndim - 1) :: NonNegativeInteger,"uncomputed")
      minR := minRowIndex x; maxC := maxColIndex x
      for i in 0..n1 repeat
        qsetelt!(v,(2**i - 1),qelt(x,i + minR,maxC))
      minorDet(x, 2**ndim - 2, [i for i in 0..n1], 0, v)

       -- elementary operation of first kind: exchange two rows --
    elRow1!(m:M,i:I,j:I) : M ==
      vec:=row(m,i)
      setRow!(m,i,row(m,j))
      setRow!(m,j,vec)
      m

             -- elementary operation of second kind: add to row i--
                         -- a*row j  (i~=j) --
    elRow2!(m : M,a:R,i:I,j:I) : M ==
      vec:= map(a*#1,row(m,j))
      vec:=map("+",row(m,i),vec)
      setRow!(m,i,vec)
      m
             -- elementary operation of second kind: add to column i --
                           -- a*column j (i~=j) --
    elColumn2!(m : M,a:R,i:I,j:I) : M ==
      vec:= map(a*#1,column(m,j))
      vec:=map("+",column(m,i),vec)
      setColumn!(m,i,vec)
      m

    if R has IntegralDomain then
      -- Fraction-Free Gaussian Elimination
      fractionFreeGauss! x  ==
        (ndim := nrows x) = 1 => x
        ans := b := 1$R
        minR := minRowIndex x; maxR := maxRowIndex x
        minC := minColIndex x; maxC := maxColIndex x
        i := minR
        for j in minC..maxC repeat
          if qelt(x,i,j) = 0 then -- candidate for pivot = 0
            rown := minR - 1
            for k in (i+1)..maxR repeat
              if qelt(x,k,j) ~= 0 then
                 rown := k -- found a pivot
                 leave
            if rown > minR - 1 then
               swapRows!(x,i,rown)
               ans := -ans
          (c := qelt(x,i,j)) = 0 =>  "next j" -- try next column
          for k: local in (i+1)..maxR repeat
            if qelt(x,k,j) = 0 then
              for l in (j+1)..maxC repeat
                qsetelt!(x,k,l,(c * qelt(x,k,l) exquo b) :: R)
            else
              pv := qelt(x,k,j)
              qsetelt!(x,k,j,0)
              for l in (j+1)..maxC repeat
                val := c * qelt(x,k,l) - pv * qelt(x,i,l)
                qsetelt!(x,k,l,(val exquo b) :: R)
          b := c
          (i := i+1)>maxR => leave
        if ans=-1 then
          lasti := i-1
          for j in 1..maxC repeat x(lasti, j) := -x(lasti,j)
        x

      --
      lastStep(x:M)  : M ==
        ndim := nrows x
        minR := minRowIndex x; maxR := maxRowIndex x
        minC := minColIndex x; maxC := minC+ndim -1
        exCol:=maxColIndex x
        det:=x(maxR,maxC)
        maxR1:=maxR-1
        maxC1:=maxC+1
        minC1:=minC+1
        iRow:=maxR
        iCol:=maxC-1
        for i in maxR1..1 by -1 repeat
          for j in maxC1..exCol repeat
            ss:=+/[x(i,iCol+k)*x(i+k,j) for k in 1..(maxR-i)]
            x(i,j) := _exquo((det * x(i,j) - ss),x(i,iCol))::R
          iCol:=iCol-1
        subMatrix(x,minR,maxR,maxC1,exCol)

      invertIfCan(y) ==
        (nr:=nrows y) ~= (ncols y) =>
            error "invertIfCan: matrix must be square"
        adjRec := adjoint y
        (den:=recip(adjRec.detMat)) case "failed" => "failed"
        den::R * adjRec.adjMat

      adjoint(y) ==
        (nr:=nrows y) ~= (ncols y) => error "adjoint: matrix must be square"
        maxR := maxRowIndex y
        maxC := maxColIndex y
        x := horizConcat(copy y,scalarMatrix(nr,1$R))
        ffr:= fractionFreeGauss!(x)
        det:=ffr(maxR,maxC)
        [lastStep(ffr),det]


    if R has Field then

      VR      ==> Vector R
      IMATLIN ==> InnerMatrixLinearAlgebraFunctions(R,Row,Col,M)
      MMATLIN ==> InnerMatrixLinearAlgebraFunctions(R,VR,VR,Matrix R)
      FLA2    ==> FiniteLinearAggregateFunctions2(R, VR, R, Col)
      MAT2    ==> MatrixCategoryFunctions2(R,Row,Col,M,R,VR,VR,Matrix R)

      rowEchelon  y == rowEchelon(y)$IMATLIN
      rank        y == rank(y)$IMATLIN
      nullity     y == nullity(y)$IMATLIN
      determinant y == determinant(y)$IMATLIN
      inverse     y == inverse(y)$IMATLIN
      if Col has shallowlyMutable then
        nullSpace y == nullSpace(y)$IMATLIN
      else
        nullSpace y ==
          [map(#1, v)$FLA2 for v in nullSpace(map(#1, y)$MAT2)$MMATLIN]

    else if R has IntegralDomain then
      QF      ==> Fraction R
      Row2    ==> Vector QF
      Col2    ==> Vector QF
      M2      ==> Matrix QF
      IMATQF  ==> InnerMatrixQuotientFieldFunctions(R,Row,Col,M,QF,Row2,Col2,M2)

      nullSpace m == nullSpace(m)$IMATQF

      determinant y ==
        (nrows y) ~= (ncols y) => error "determinant: matrix must be square"
        fm:=fractionFreeGauss!(copy y)
        fm(maxRowIndex fm,maxColIndex fm)

      rank x ==
        y :=
          (rk := nrows x) > (rh := ncols x) =>
              rk := rh
              transpose x
          copy x
        y := fractionFreeGauss! y
        i := maxRowIndex y
        while positive? rk and rowAllZeroes?(y,i) repeat
          i := i - 1
          rk := (rk - 1) :: NonNegativeInteger
        rk :: NonNegativeInteger

      nullity x == (ncols x - rank x) :: NonNegativeInteger

      if R has EuclideanDomain then

        if R has IntegerNumberSystem then
            normalizedDivide(n:R, d:R):Record(quotient:R, remainder:R) ==
               qr := divide(n, d)
               qr.remainder >= 0 => qr
               positive? d =>
                  qr.remainder := qr.remainder + d
                  qr.quotient := qr.quotient - 1
                  qr
               qr.remainder := qr.remainder - d
               qr.quotient := qr.quotient + 1
               qr
        else
            normalizedDivide(n:R, d:R):Record(quotient:R, remainder:R) ==
               divide(n, d)

        rowEchelon y ==
          x := copy y
          minR := minRowIndex x; maxR := maxRowIndex x
          minC := minColIndex x; maxC := maxColIndex x
          n := minR - 1
          i := minR
          for j in minC..maxC repeat
            if i > maxR then leave x
            n := minR - 1
            xnj: R
            for k in i..maxR repeat
              if not zero?(xkj:=qelt(x,k,j)) and ((n = minR - 1) _
                     or sizeLess?(xkj,xnj)) then
                n := k
                xnj := xkj
            n = minR - 1 => "next j"
            swapRows!(x,i,n)
            for k in (i+1)..maxR repeat
              qelt(x,k,j) = 0 => "next k"
              aa := extendedEuclidean(qelt(x,i,j),qelt(x,k,j))
              (a,b,d) := (aa.coef1,aa.coef2,aa.generator)
              b1 := (qelt(x,i,j) exquo d) :: R
              a1 := (qelt(x,k,j) exquo d) :: R
              -- a*b1+a1*b = 1
              for k1 in (j+1)..maxC repeat
                val1 := a * qelt(x,i,k1) + b * qelt(x,k,k1)
                val2 := -a1 * qelt(x,i,k1) + b1 * qelt(x,k,k1)
                qsetelt!(x,i,k1,val1); qsetelt!(x,k,k1,val2)
              qsetelt!(x,i,j,d); qsetelt!(x,k,j,0)

            un := unitNormal qelt(x,i,j)
            qsetelt!(x,i,j,un.canonical)
            if not one?(un.associate) then for jj in (j+1)..maxC repeat
                qsetelt!(x,i,jj,un.associate * qelt(x,i,jj))

            xij := qelt(x,i,j)
            for k in minR..(i-1) repeat
              qelt(x,k,j) = 0 => "next k"
              qr := normalizedDivide(qelt(x,k,j), xij)
              qsetelt!(x,k,j,qr.remainder)
              for k1 in (j+1)..maxC repeat
                qsetelt!(x,k,k1,qelt(x,k,k1) - qr.quotient * qelt(x,i,k1))
            i := i + 1
          x

    else determinant x == minordet x

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

-- This file and MATRIX SPAD must be compiled in bootstrap mode.

<<package IMATLIN InnerMatrixLinearAlgebraFunctions>>
<<package MATCAT2 MatrixCategoryFunctions2>>
<<package RMCAT2 RectangularMatrixCategoryFunctions2>>
<<package IMATQF InnerMatrixQuotientFieldFunctions>>
<<package MATLIN MatrixLinearAlgebraFunctions>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}