1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra leadcdet.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package LEADCDET LeadingCoefDetermination}
<<package LEADCDET LeadingCoefDetermination>>=
)abbrev package LEADCDET LeadingCoefDetermination
++ Author : P.Gianni, May 1990
++ Description:
++ Package for leading coefficient determination in the lifting step.
++ Package working for every R euclidean with property "F".
LeadingCoefDetermination(OV,E,Z,P) : C == T
where
OV : OrderedSet
E : OrderedAbelianMonoidSup
Z : EuclideanDomain
BP ==> SparseUnivariatePolynomial Z
P : PolynomialCategory(Z,E,OV)
NNI ==> NonNegativeInteger
LeadFact ==> Record(polfac:List(P),correct:Z,corrfact:List(BP))
ParFact ==> Record(irr:P,pow:Integer)
FinalFact ==> Record(contp:Z,factors:List(ParFact))
C == with
polCase : (Z,NNI,List(Z)) -> Boolean
++ polCase(contprod, numFacts, evallcs), where contprod is the
++ product of the content of the leading coefficient of
++ the polynomial to be factored with the content of the
++ evaluated polynomial, numFacts is the number of factors
++ of the leadingCoefficient, and evallcs is the list of
++ the evaluated factors of the leadingCoefficient, returns
++ true if the factors of the leading Coefficient can be
++ distributed with this valuation.
distFact : (Z,List(BP),FinalFact,List(Z),List(OV),List(Z)) ->
Union(LeadFact,"failed")
++ distFact(contm,unilist,plead,vl,lvar,lval), where contm is
++ the content of the evaluated polynomial, unilist is the list
++ of factors of the evaluated polynomial, plead is the complete
++ factorization of the leading coefficient, vl is the list
++ of factors of the leading coefficient evaluated, lvar is the
++ list of variables, lval is the list of values, returns a record
++ giving the list of leading coefficients to impose on the univariate
++ factors,
T == add
distribute: (Z,List(BP),List(P),List(Z),List(OV),List(Z)) -> LeadFact
checkpow : (Z,Z) -> NNI
polCase(d:Z,nk:NNI,lval:List(Z)):Boolean ==
-- d is the product of the content lc m (case polynomial)
-- and the cont of the polynomial evaluated
q:Z
distlist:List(Z) := [d]
for i in 1..nk repeat
q := unitNormal(lval.i).canonical
for j in 0..(i-1)::NNI repeat
y := distlist.((i-j)::NNI)
while y~=1 repeat
y := gcd(y,q)
q := q quo y
if q=1 then return false
distlist := append(distlist,[q])
true
checkpow(a:Z,b:Z) : NonNegativeInteger ==
qt: Union(Z,"failed")
for i in 0.. repeat
qt:= b exquo a
if qt case "failed" then return i
b:=qt::Z
distribute(contm:Z,unilist:List(BP),pl:List(P),vl:List(Z),
lvar:List(OV),lval:List(Z)): LeadFact ==
d,lcp : Z
nf:NNI:=#unilist
for i in 1..nf repeat
lcp := leadingCoefficient (unilist.i)
d:= gcd(lcp,vl.i)
pl.i := (lcp quo d)*pl.i
d := vl.i quo d
unilist.i := d*unilist.i
contm := contm quo d
if contm ~=1 then for i in 1..nf repeat pl.i := contm*pl.i
[pl,contm,unilist]$LeadFact
distFact(contm:Z,unilist:List(BP),plead:FinalFact,
vl:List(Z),lvar:List(OV),lval:List(Z)):Union(LeadFact,"failed") ==
h:NonNegativeInteger
c,d : Z
lpol:List(P):=[]
lexp:List(Integer):=[]
nf:NNI := #unilist
vl := reverse vl --lpol and vl reversed so test from right to left
for fpl in plead.factors repeat
lpol:=[fpl.irr,:lpol]
lexp:=[fpl.pow,:lexp]
vlp:List(Z):= [1$Z for i in 1..nf]
aux : List(P) := [1$P for i in 1..nf]
for i in 1..nf repeat
c := contm*leadingCoefficient unilist.i
c=1 or c=-1 => "next i"
for k in 1..(# lpol) repeat
lexp.k=0 => "next factor"
h:= checkpow(vl.k,c)
if h ~=0 then
if h>lexp.k then return "failed"
lexp.k:=lexp.k-h
aux.i := aux.i*(lpol.k ** h)
d:= vl.k**h
vlp.i:= vlp.i*d
c:= c quo d
if contm=1 then vlp.i:=c
for k in 1..(# lpol) repeat if lexp.k ~= 0 then return "failed"
contm =1 => [[vlp.i*aux.i for i in 1..nf],1,unilist]$LeadFact
distribute(contm,unilist,aux,vlp,lvar,lval)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package LEADCDET LeadingCoefDetermination>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|