aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/integer.spad.pamphlet
blob: a1dd4478cfd6ddb7e7485966380fcec51f09b54f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra integer.spad}
\author{James Davenport}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package INTSLPE IntegerSolveLinearPolynomialEquation}
<<package INTSLPE IntegerSolveLinearPolynomialEquation>>=
)abbrev package INTSLPE IntegerSolveLinearPolynomialEquation
++ Author: Davenport
++ Date Created: 1991
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package provides the implementation for the
++ \spadfun{solveLinearPolynomialEquation}
++ operation over the integers. It uses a lifting technique
++ from the package GenExEuclid
IntegerSolveLinearPolynomialEquation(): C ==T
 where
  ZP ==> SparseUnivariatePolynomial Integer
  C == with
      solveLinearPolynomialEquation: (List ZP,ZP) -> Union(List ZP,"failed")
           ++ solveLinearPolynomialEquation([f1, ..., fn], g)
           ++ (where the fi are relatively prime to each other)
           ++ returns a list of ai such that
           ++ \spad{g/prod fi = sum ai/fi}
           ++ or returns "failed" if no such list of ai's exists.
  T == add
      oldlp:List ZP := []
      slpePrime:Integer:=(2::Integer)
      oldtable:Vector List ZP := empty()
      solveLinearPolynomialEquation(lp,p) ==
         if (oldlp ~= lp) then
            -- we have to generate a new table
            deg:= +/[degree u for u in lp]
            ans:Union(Vector List ZP,"failed"):="failed"
            slpePrime:=2147483647::Integer   -- 2**31 -1 : a prime
                 -- a good test case for this package is
                 --  ([x**31-1,x-2],2)
            while (ans case "failed") repeat
              ans:=tablePow(deg,slpePrime,lp)$GenExEuclid(Integer,ZP)
              if (ans case "failed") then
                 slpePrime:= prevPrime(slpePrime)$IntegerPrimesPackage(Integer)
            oldtable:=(ans:: Vector List ZP)
         answer:=solveid(p,slpePrime,oldtable)
         answer

@
\section{domain INT Integer}

<<domain INT Integer>>=
)abbrev domain INT Integer
++ Author:
++ Date Created:
++ Change History:
++ Basic Operations:
++ Related Constructors:
++ Keywords: integer
++ Description: \spadtype{Integer} provides the domain of arbitrary precision
++ integers.

Integer: Join(IntegerNumberSystem, ConvertibleTo String, OpenMath) with
    canonical
      ++ mathematical equality is data structure equality.
    canonicalsClosed
      ++ two positives multiply to give positive.
    noetherian
      ++ ascending chain condition on ideals.
    infinite
      ++ nextItem never returns "failed".
 == add
      ZP ==> SparseUnivariatePolynomial %
      ZZP ==> SparseUnivariatePolynomial Integer
      x,y: %
      n: NonNegativeInteger

      writeOMInt(dev: OpenMathDevice, x: %): Void ==
        if x < 0 then
          OMputApp(dev)
          OMputSymbol(dev, "arith1", "unary__minus")
          OMputInteger(dev, (-x) pretend Integer)
          OMputEndApp(dev)
        else
          OMputInteger(dev, x pretend Integer)

      OMwrite(x: %): String ==
        s: String := ""
        sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
        dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
        OMputObject(dev)
        writeOMInt(dev, x)
        OMputEndObject(dev)
        OMclose(dev)
        s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
        s

      OMwrite(x: %, wholeObj: Boolean): String ==
        s: String := ""
        sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
        dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
        if wholeObj then
          OMputObject(dev)
        writeOMInt(dev, x)
        if wholeObj then
          OMputEndObject(dev)
        OMclose(dev)
        s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
        s

      OMwrite(dev: OpenMathDevice, x: %): Void ==
        OMputObject(dev)
        writeOMInt(dev, x)
        OMputEndObject(dev)

      OMwrite(dev: OpenMathDevice, x: %, wholeObj: Boolean): Void ==
        if wholeObj then
          OMputObject(dev)
        writeOMInt(dev, x)
        if wholeObj then
          OMputEndObject(dev)

      zero? x == ZEROP(x)$Lisp
      one? x == x = 1
      0 == 0$Lisp
      1 == 1$Lisp
      base()  == 2$Lisp
      copy x  == x
      inc  x  == x + 1
      dec  x  == x - 1
      hash x == SXHASH(x)$Lisp
      negative? x == MINUSP(x)$Lisp
      coerce(x):OutputForm == outputForm(x pretend Integer)
      coerce(m:Integer):% == m pretend %
      convert(x:%):Integer == x pretend Integer
      length a == INTEGER_-LENGTH(a)$Lisp
      addmod(a, b, p) ==
         (c:=a + b) >= p => c - p
         c
      submod(a, b, p) ==
         (c:=a - b) < 0 => c + p
         c
      mulmod(a, b, p) == (a * b) rem p
      convert(x:%):Float       == coerce(x pretend Integer)$Float
      convert(x:%):DoubleFloat  == coerce(x pretend Integer)$DoubleFloat
      convert(x:%):InputForm   == convert(x pretend Integer)$InputForm
      convert(x:%):String      == string(x pretend Integer)$String

      latex(x:%):String ==
        s : String := string(x pretend Integer)$String
        (-1 < (x pretend Integer)) and ((x  pretend Integer) < 10) => s
        concat("{", concat(s, "}")$String)$String

      positiveRemainder(a, b) ==
        negative?(r := a rem b) =>
           negative? b => r - b
           r + b
        r

      reducedSystem(m:Matrix %):Matrix(Integer) ==
        m pretend Matrix(Integer)

      reducedSystem(m:Matrix %, v:Vector %):
       Record(mat:Matrix(Integer), vec:Vector(Integer)) ==
        [m pretend Matrix(Integer), vec pretend Vector(Integer)]

      abs(x) == ABS(x)$Lisp
      random() == random()$Lisp
      random(x) == RANDOM(x)$Lisp
      x = y == EQL(x,y)$Lisp
      x < y == (x<y)$Lisp
      x > y == (x > y)$Lisp       -- Don't rely on default; help the inliner
      x <= y == (x <= y)$Lisp     -- Ditto
      x >= y == (x >= y)$Lisp     -- Ditto
      - x == (-x)$Lisp
      x + y == (x+y)$Lisp
      x - y == (x-y)$Lisp
      x * y == (x*y)$Lisp
      (m:Integer) * (y:%) == (m*y)$Lisp -- for subsumption problem
      x ** n == EXPT(x,n)$Lisp
      odd? x == ODDP(x)$Lisp
      max(x,y) == MAX(x,y)$Lisp
      min(x,y) == MIN(x,y)$Lisp
      divide(x,y) == DIVIDE2(x,y)$Lisp
      x quo y == QUOTIENT2(x,y)$Lisp
      x rem y == REMAINDER2(x,y)$Lisp
      shift(x, y) == ASH(x,y)$Lisp
      recip(x) == if one? x or x=-1 then x else "failed"
      gcd(x,y) == GCD(x,y)$Lisp
      UCA ==> Record(unit:%,canonical:%,associate:%)
      unitNormal x ==
         x < 0 => [-1,-x,-1]$UCA
         [1,x,1]$UCA
      unitCanonical x == abs x
      solveLinearPolynomialEquation(lp:List ZP,p:ZP):Union(List ZP,"failed") ==
         solveLinearPolynomialEquation(lp pretend List ZZP,
               p pretend ZZP)$IntegerSolveLinearPolynomialEquation pretend
                     Union(List ZP,"failed")
      squareFreePolynomial(p:ZP):Factored ZP ==
        squareFree(p)$UnivariatePolynomialSquareFree(%,ZP)
      factorPolynomial(p:ZP):Factored ZP ==
         -- GaloisGroupFactorizer doesn't factor the content
         -- so we have to do this by hand
         pp:=primitivePart p
         leadingCoefficient pp = leadingCoefficient p =>
             factor(p)$GaloisGroupFactorizer(ZP)
         mergeFactors(factor(pp)$GaloisGroupFactorizer(ZP),
                        map(#1::ZP,
                            factor((leadingCoefficient p exquo
                                    leadingCoefficient pp)
                                   ::%))$FactoredFunctions2(%,ZP)
                                     )$FactoredFunctionUtilities(ZP)
      factorSquareFreePolynomial(p:ZP):Factored ZP ==
           factorSquareFree(p)$GaloisGroupFactorizer(ZP)
      gcdPolynomial(p:ZP, q:ZP):ZP ==
         zero? p => unitCanonical q
         zero? q => unitCanonical p
         gcd([p,q])$HeuGcd(ZP)
--    myNextPrime: (%,NonNegativeInteger) -> %
--    myNextPrime(x,n) ==
--       nextPrime(x)$IntegerPrimesPackage(%)
--    TT:=InnerModularGcd(%,ZP,67108859 pretend %,myNextPrime)
--    gcdPolynomial(p,q) == modularGcd(p,q)$TT

@


\section{domain NNI NonNegativeInteger}

<<domain NNI NonNegativeInteger>>=
)abbrev domain NNI NonNegativeInteger
++ Author:
++ Date Created:
++ Change History:
++ Basic Operations:
++ Related Constructors:
++ Keywords: integer
++ Description: \spadtype{NonNegativeInteger} provides functions for non
++   negative integers.
NonNegativeInteger: Join(OrderedAbelianMonoidSup,Monoid) with
            quo : (%,%) -> %
              ++ a quo b returns the quotient of \spad{a} and b, forgetting
              ++ the remainder.
            rem : (%,%) -> %
              ++ a rem b returns the remainder of \spad{a} and b.
            gcd  : (%,%) -> %
              ++ gcd(a,b) computes the greatest common divisor of two
              ++ non negative integers \spad{a} and b.
            divide: (%,%) -> Record(quotient:%,remainder:%)
              ++ divide(a,b) returns a record containing both
              ++ remainder and quotient.
            exquo: (%,%) -> Union(%,"failed")
              ++ exquo(a,b) returns the quotient of \spad{a} and b, or "failed"
              ++ if b is zero or \spad{a} rem b is zero.
            shift: (%, Integer) -> %
              ++ shift(a,i) shift \spad{a} by i bits.
            random   : % -> %
              ++ random(n) returns a random integer from 0 to \spad{n-1}.
            commutative("*")
              ++ commutative("*") means multiplication is commutative : \spad{x*y = y*x}.

  == SubDomain(Integer,#1 >= 0) add
      x,y:%
      sup(x,y) == MAX(x,y)$Lisp
      shift(x:%, n:Integer):% == ASH(x,n)$Lisp
      subtractIfCan(x, y) ==
        c:Integer := rep x - rep y
        c < 0 => "failed"
        per c

@

\section{domain PI PositiveInteger}
<<domain PI PositiveInteger>>=
)abbrev domain PI PositiveInteger
++ Author:
++ Date Created:
++ Change History:
++ Basic Operations:
++ Related Constructors:
++ Keywords: positive integer
++ Description: \spadtype{PositiveInteger} provides functions for
++   positive integers.
PositiveInteger: Join(OrderedAbelianSemiGroup,Monoid) with
            gcd: (%,%) -> %
              ++ gcd(a,b) computes the greatest common divisor of two
              ++ positive integers \spad{a} and b.
            commutative("*")
              ++ commutative("*") means multiplication is commutative : x*y = y*x
 == SubDomain(NonNegativeInteger,#1 > 0)

@


\section{domain ROMAN RomanNumeral}
<<domain ROMAN RomanNumeral>>=
)abbrev domain ROMAN RomanNumeral
++ Author:
++ Date Created:
++ Change History:
++ Basic Operations:
++   convert, roman
++ Related Constructors:
++ Keywords: roman numerals
++ Description:  \spadtype{RomanNumeral} provides functions for converting
++   integers to roman numerals.
RomanNumeral(): Join(IntegerNumberSystem,ConvertibleFrom Symbol) with
    canonical
      ++ mathematical equality is data structure equality.
    canonicalsClosed
      ++ two positives multiply to give positive.
    noetherian
      ++ ascending chain condition on ideals.
    roman  : Symbol  -> %
      ++ roman(n) creates a roman numeral for symbol n.
    roman  : Integer -> %
      ++ roman(n) creates a roman numeral for n.

  == Integer add
        import NumberFormats()

        roman(n:Integer) == n::%
        roman(sy:Symbol) == convert sy
        convert(sy:Symbol):%    == ScanRoman(string sy)::%

        coerce(r:%):OutputForm ==
            n := convert(r)@Integer
            -- okay, we stretch it
            zero? n => n::OutputForm
            negative? n => - ((-r)::OutputForm)
            FormatRoman(n::PositiveInteger)::Symbol::OutputForm

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package INTSLPE IntegerSolveLinearPolynomialEquation>>
<<domain INT Integer>>
<<domain NNI NonNegativeInteger>>
<<domain PI PositiveInteger>>
<<domain ROMAN RomanNumeral>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}