1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra groebsol.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package GROEBSOL GroebnerSolve}
<<package GROEBSOL GroebnerSolve>>=
)abbrev package GROEBSOL GroebnerSolve
++ Author : P.Gianni, Summer '88, revised November '89
++ Solve systems of polynomial equations using Groebner bases
++ Total order Groebner bases are computed and then converted to lex ones
++ This package is mostly intended for internal use.
GroebnerSolve(lv,F,R) : C == T
where
R : GcdDomain
F : GcdDomain
lv : List Symbol
NNI ==> NonNegativeInteger
I ==> Integer
S ==> Symbol
OV ==> OrderedVariableList(lv)
IES ==> IndexedExponents Symbol
DP ==> DirectProduct(#lv,NonNegativeInteger)
DPoly ==> DistributedMultivariatePolynomial(lv,F)
HDP ==> HomogeneousDirectProduct(#lv,NonNegativeInteger)
HDPoly ==> HomogeneousDistributedMultivariatePolynomial(lv,F)
SUP ==> SparseUnivariatePolynomial(DPoly)
L ==> List
P ==> Polynomial
C == with
groebSolve : (L DPoly,L OV) -> L L DPoly
++ groebSolve(lp,lv) reduces the polynomial system lp in variables lv
++ to triangular form. Algorithm based on groebner bases algorithm
++ with linear algebra for change of ordering.
++ Preprocessing for the general solver.
++ The polynomials in input are of type \spadtype{DMP}.
testDim : (L HDPoly,L OV) -> Union(L HDPoly,"failed")
++ testDim(lp,lv) tests if the polynomial system lp
++ in variables lv is zero dimensional.
genericPosition : (L DPoly, L OV) -> Record(dpolys:L DPoly, coords: L I)
++ genericPosition(lp,lv) puts a radical zero dimensional ideal
++ in general position, for system lp in variables lv.
T == add
import Boolean
import PolToPol(lv,F)
import GroebnerPackage(F,DP,OV,DPoly)
import GroebnerInternalPackage(F,DP,OV,DPoly)
import GroebnerPackage(F,HDP,OV,HDPoly)
import LinGroebnerPackage(lv,F)
nv:NNI:=#lv
---- test if f is power of a linear mod (rad lpol) ----
---- f is monic ----
testPower(uf:SUP,x:OV,lpol:L DPoly) : Union(DPoly,"failed") ==
df:=degree(uf)
trailp:DPoly := coefficient(uf,(df-1)::NNI)
(testquo := trailp exquo (df::F)) case "failed" => "failed"
trailp := testquo::DPoly
gg:=gcd(lc:=leadingCoefficient(uf),trailp)
trailp := (trailp exquo gg)::DPoly
lc := (lc exquo gg)::DPoly
linp:SUP:=monomial(lc,1$NNI)$SUP + monomial(trailp,0$NNI)$SUP
g:DPoly:=multivariate(uf-linp**df,x)
redPol(g,lpol) ~= 0 => "failed"
multivariate(linp,x)
-- is the 0-dimensional ideal I in general position ? --
---- internal function ----
testGenPos(lpol:L DPoly,lvar:L OV):Union(L DPoly,"failed") ==
rlpol:=reverse lpol
f:=rlpol.first
#lvar=1 => [f]
rlvar:=rest reverse lvar
newlpol:List(DPoly):=[f]
for f: local in rlpol.rest repeat
x:=first rlvar
fi:= univariate(f,x)
if (mainVariable leadingCoefficient fi case "failed") then
if ((g:= testPower(fi,x,newlpol)) case "failed")
then return "failed"
newlpol :=concat(redPol(g::DPoly,newlpol),newlpol)
rlvar:=rest rlvar
else if not zero? redPol(f,newlpol) then return"failed"
newlpol
-- change coordinates and out the ideal in general position ----
genPos(lp:L DPoly,lvar:L OV): Record(polys:L HDPoly, lpolys:L DPoly,
coord:L I, univp:HDPoly) ==
rlvar:=reverse lvar
lnp:=[dmpToHdmp(f) for f in lp]
x := first rlvar;rlvar:=rest rlvar
testfail:=true
ranvals: L I
gb: L HDPoly
gbt: L DPoly
gb1: Union(L DPoly,"failed")
for count in 1.. while testfail repeat
ranvals := [1 + random(count*(# lvar))$I for vv in rlvar]
val:=+/[rv*(vv::HDPoly)
for vv in rlvar for rv in ranvals]
val:=val+x::HDPoly
gb := [elt(univariate(p,x),val) for p in lnp]
gb:=groebner gb
gbt:=totolex gb
(gb1:=testGenPos(gbt,lvar)) case "failed"=>"try again"
testfail:=false
[gb,gbt,ranvals,dmpToHdmp(last (gb1::L DPoly))]
genericPosition(lp:L DPoly,lvar:L OV) ==
nans:=genPos(lp,lvar)
[nans.lpolys, nans.coord]
---- select the univariate factors
select(lup:L L HDPoly) : L L HDPoly ==
lup=[] => list []
[:[cons(f,lsel) for lsel in select lup.rest] for f in lup.first]
---- in the non generic case, we compute the prime ideals ----
---- associated to leq, basis is the algebra basis ----
findCompon(leq:L HDPoly,lvar:L OV):L L DPoly ==
teq:=totolex(leq)
#teq = #lvar => [teq]
-- not ((teq1:=testGenPos(teq,lvar)) case "failed") => [teq1::L DPoly]
gp:=genPos(teq,lvar)
lgp:= gp.polys
g:HDPoly:=gp.univp
fg:=(factor g)$GeneralizedMultivariateFactorize(OV,HDP,R,F,HDPoly)
lfact:=[ff.factor for ff in factors(fg::Factored(HDPoly))]
result: L L HDPoly := []
#lfact=1 => [teq]
for tfact in lfact repeat
tlfact:=concat(tfact,lgp)
result:=concat(tlfact,result)
ranvals:L I:=gp.coord
rlvar:=reverse lvar
x:=first rlvar
rlvar:=rest rlvar
val:=+/[rv*(vv::HDPoly) for vv in rlvar for rv in ranvals]
val:=(x::HDPoly)-val
ans:=[totolex groebner [elt(univariate(p,x),val) for p in lp]
for lp in result]
[ll for ll in ans | ll~=[1]]
zeroDim?(lp: List HDPoly,lvar:L OV) : Boolean ==
empty? lp => false
n:NNI := #lvar
#lp < n => false
lvint1 := lvar
for f in lp while not empty?(lvint1) repeat
g:= f - reductum f
x:=mainVariable(g)::OV
if ground?(leadingCoefficient(univariate(g,x))) then
lvint1 := remove(x, lvint1)
empty? lvint1
-- general solve, gives an error if the system not 0-dimensional
groebSolve(leq: L DPoly,lvar:L OV) : L L DPoly ==
lnp:=[dmpToHdmp(f) for f in leq]
leq1:=groebner lnp
#(leq1) = 1 and first(leq1) = 1 => list empty()
not (zeroDim?(leq1,lvar)) =>
error "system does not have a finite number of solutions"
-- add computation of dimension, for a more useful error
basis:=computeBasis(leq1)
lup:L HDPoly:=[]
llfact:L Factored(HDPoly):=[]
for x in lvar repeat
g:=minPol(leq1,basis,x)
fg:=(factor g)$GeneralizedMultivariateFactorize(OV,HDP,R,F,HDPoly)
llfact:=concat(fg::Factored(HDPoly),llfact)
if degree(g,x) = #basis then leave "stop factoring"
result: L L DPoly := []
-- selecting a factor from the lists of the univariate factors
lfact:=select [[ff.factor for ff in factors llf]
for llf in llfact]
for tfact in lfact repeat
tfact:=groebner concat(tfact,leq1)
tfact=[1] => "next value"
result:=concat(result,findCompon(tfact,lvar))
result
-- test if the system is zero dimensional
testDim(leq : L HDPoly,lvar : L OV) : Union(L HDPoly,"failed") ==
leq1:=groebner leq
#(leq1) = 1 and first(leq1) = 1 => empty()
not (zeroDim?(leq1,lvar)) => "failed"
leq1
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package GROEBSOL GroebnerSolve>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|