aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/fortmac.spad.pamphlet
blob: bbad885372028169f8f9289e399b1108cac1b150 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra fortmac.spad}
\author{Mike Dewar}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain MINT MachineInteger}
<<domain MINT MachineInteger>>=
)abbrev domain MINT MachineInteger
++ Author: Mike Dewar
++ Date Created:  December 1993
++ Date Last Updated:
++ Basic Operations:
++ Related Domains:
++ Also See: FortranExpression, FortranMachineTypeCategory, MachineFloat,
++  MachineComplex
++ AMS Classifications:
++ Keywords:
++ Examples:
++ References:
++ Description: A domain which models the integer representation
++ used by machines in the AXIOM-NAG link.
MachineInteger(): Exports == Implementation where

  S ==> String

  Exports ==> Join(FortranMachineTypeCategory,IntegerNumberSystem) with
    maxint : PositiveInteger -> PositiveInteger
     ++ maxint(u) sets the maximum integer in the model to u
    maxint : () -> PositiveInteger
     ++ maxint() returns the maximum integer in the model
    coerce : Expression Integer -> Expression $
     ++ coerce(x) returns x with coefficients in the domain

  Implementation  ==> Integer add

    MAXINT : PositiveInteger := 2**32

    maxint():PositiveInteger == MAXINT

    maxint(new:PositiveInteger):PositiveInteger ==
      old := MAXINT
      MAXINT := new
      old

    coerce(u:Expression Integer):Expression($) ==
      map(coerce,u)$ExpressionFunctions2(Integer,$)

    coerce(u:Integer):$ ==
      import S
      abs(u) > MAXINT => 
        message: S := concat [convert(u)@S,"  > MAXINT(",convert(MAXINT)@S,")"]
        error message
      per u

    retract(u:$):Integer == rep u

    retractIfCan(u:$):Union(Integer,"failed") == rep u

@
\section{domain MFLOAT MachineFloat}
<<domain MFLOAT MachineFloat>>=
)abbrev domain MFLOAT MachineFloat
++ Author: Mike Dewar
++ Date Created:  December 1993
++ Date Last Updated:
++ Basic Operations:
++ Related Domains:
++ Also See: FortranExpression, FortranMachineTypeCategory, MachineInteger,
++  MachineComplex
++ AMS Classifications:
++ Keywords:
++ Examples:
++ References:
++ Description: A domain which models the floating point representation
++ used by machines in the AXIOM-NAG link.
MachineFloat(): Exports == Implementation where

  PI  ==> PositiveInteger
  NNI ==> NonNegativeInteger
  F   ==> Float
  I   ==> Integer
  S   ==> String
  FI  ==> Fraction Integer
  SUP ==> SparseUnivariatePolynomial
  SF  ==> DoubleFloat
 
  Exports ==> Join(FloatingPointSystem,FortranMachineTypeCategory,Field,
      RetractableTo(Float),RetractableTo(Fraction(Integer)),CharacteristicZero) with
    precision : PI -> PI
      ++ precision(p) sets the number of digits in the model to p
    precision : () -> PI
      ++ precision() returns the number of digits in the model 
    base   : PI -> PI
      ++ base(b) sets the base of the model to b
    maximumExponent : I -> I
      ++ maximumExponent(e) sets the maximum exponent in the model to e
    maximumExponent : () -> I
      ++ maximumExponent() returns the maximum exponent in the model
    minimumExponent : I -> I
      ++ minimumExponent(e) sets the minimum exponent in the model to e
    minimumExponent : () -> I
      ++ minimumExponent() returns the minimum exponent in the model
    coerce : $ -> F
      ++ coerce(u) transforms a MachineFloat to a standard Float
    coerce : MachineInteger -> $
      ++ coerce(u) transforms a MachineInteger into a MachineFloat
    mantissa  : $ -> I
      ++ mantissa(u) returns the mantissa of u
    exponent  : $ -> I
      ++ exponent(u) returns the exponent of u
    changeBase : (I,I,PI) -> $
      ++ changeBase(exp,man,base) \undocumented{}

  Implementation ==> add

    import F
    import FI

    Rep := Record(mantissa:I,exponent:I)

    -- Parameters of the Floating Point Representation
    P : PI := 16      -- Precision
    B : PI := 2       -- Base
    EMIN : I := -1021 -- Minimum Exponent
    EMAX : I :=  1024 -- Maximum Exponent

    -- Useful constants
    POWER : PI := 53  -- The maximum power of B which will yield P
                      -- decimal digits.
    MMAX  : PI := B**POWER 
    

    -- locals
    locRound:(FI)->I
    checkExponent:($)->$
    normalise:($)->$
    newPower:(PI,PI)->Void
 
    retractIfCan(u:$):Union(FI,"failed") == 
      mantissa(u)*(B/1)**(exponent(u))

    wholePart(u:$):Integer ==
       man:I:=mantissa u
       exp:I:=exponent u
       f:=
           positive? exp => man*B**(exp pretend PI)
           zero? exp => man
           wholePart(man/B**((-exp) pretend PI))
    normalise(u:$):$ ==
      -- We want the largest possible mantissa, to ensure a canonical
      -- representation.
      exp : I  := exponent u
      man : I  := mantissa u
      BB  : I  := B pretend I
      sgn : I := sign man ; man := abs man
      zero? man => [0,0]$Rep
      if man < MMAX then 
        while man < MMAX repeat
          exp := exp - 1
          man := man * BB
      if man > MMAX then
        q1:FI:= man/1
        BBF:FI:=BB/1
        while wholePart(q1) > MMAX repeat
          q1:= q1 / BBF
          exp:=exp + 1
        man := locRound(q1)  
      positive?(sgn) => checkExponent [man,exp]$Rep
      checkExponent [-man,exp]$Rep

    mantissa(u:$):I == elt(u,mantissa)$Rep
    exponent(u:$):I == elt(u,exponent)$Rep

    newPower(base:PI,prec:PI):Void ==
      power   : PI := 1
      target  : PI := 10**prec
      current : PI := base
      while (current := current*base) < target repeat power := power+1
      POWER := power
      MMAX  := B**POWER
      void()

    changeBase(exp:I,man:I,base:PI):$ ==
      newExp : I  := 0
      f      : FI := man*(base pretend I)::FI**exp
      sign   : I  := sign f
      f      : FI := abs f
      newMan : I  := wholePart f
      zero? f => [0,0]$Rep
      BB     : FI := (B pretend I)::FI
      if newMan < MMAX then
        while newMan < MMAX repeat
          newExp := newExp - 1
          f := f*BB
          newMan := wholePart f
      if newMan > MMAX then
        while newMan > MMAX repeat
          newExp := newExp + 1
          f := f/BB
          newMan := wholePart f
      [sign*newMan,newExp]$Rep

    checkExponent(u:$):$ ==
      exponent(u) < EMIN or exponent(u) > EMAX =>
        message :S := concat(["Exponent out of range: ",
                              convert(EMIN)@S, "..", convert(EMAX)@S])$S
        error message
      u
    
    coerce(u:$):OutputForm == 
      coerce(u::F)

    coerce(u:MachineInteger):$ ==
      checkExponent changeBase(0,retract(u)@Integer,10)

    coerce(u:$):F ==
      oldDigits : PI := digits(P)$F
      r : F := float(mantissa u,exponent u,B)$Float
      digits(oldDigits)$F
      r
    
    coerce(u:F):$ ==
      checkExponent changeBase(exponent(u)$F,mantissa(u)$F,base()$F)

    coerce(u:I):$ ==
       checkExponent changeBase(0,u,10)

    coerce(u:FI):$ == (numer u)::$/(denom u)::$

    retract(u:$):FI == 
      value : Union(FI,"failed") := retractIfCan(u)
      value case "failed" => error "Cannot retract to a Fraction Integer"
      value::FI

    retract(u:$):F == u::F

    retractIfCan(u:$):Union(F,"failed") == u::F::Union(F,"failed")

    retractIfCan(u:$):Union(I,"failed") ==
      value:FI := mantissa(u)*(B pretend I)::FI**exponent(u)
      zero? fractionPart(value) => wholePart(value)::Union(I,"failed")
      "failed"::Union(I,"failed")

    retract(u:$):I ==
      result : Union(I,"failed") := retractIfCan u
      result = "failed" => error "Not an Integer"
      result::I

    precision(p: PI):PI ==
      old : PI := P
      newPower(B,p)
      P := p
      old

    precision():PI == P

    base(b:PI):PI ==
      old : PI := b
      newPower(b,P)
      B := b
      old

    base():PI == B

    maximumExponent(u:I):I ==
      old : I := EMAX
      EMAX := u
      old

    maximumExponent():I == EMAX

    minimumExponent(u:I):I ==
      old : I := EMIN
      EMIN := u
      old

    minimumExponent():I == EMIN

    0 == [0,0]$Rep
    1 == changeBase(0,1,10)

    zero?(u:$):Boolean == u=[0,0]$Rep



    f1:$
    f2:$


    locRound(x:FI):I ==
      abs(fractionPart(x)) >= 1/2 => wholePart(x)+sign(x)
      wholePart(x)

    recip f1 ==
      zero? f1 => "failed"
      normalise [ locRound(B**(2*POWER)/mantissa f1),-(exponent f1 + 2*POWER)]
    
    f1 * f2 == 
      normalise [mantissa(f1)*mantissa(f2),exponent(f1)+exponent(f2)]$Rep
    
    f1 **(p:FI) ==
      ((f1::F)**p)::%

--inline
    f1 / f2 == 
      zero? f2 => error "division by zero"
      zero? f1 => 0
      f1=f2 => 1
      normalise [locRound(mantissa(f1)*B**(2*POWER)/mantissa(f2)),
         exponent(f1)-(exponent f2 + 2*POWER)]
    
    inv(f1) == 1/f1

    f1 exquo f2 == f1/f2

    divide(f1,f2) == [ f1/f2,0]

    f1 quo f2 == f1/f2
    f1 rem f2 == 0
    u:I * f1 == 
      normalise [u*mantissa(f1),exponent(f1)]$Rep

    f1 = f2 == mantissa(f1)=mantissa(f2) and exponent(f1)=exponent(f2)

    f1 + f2 == 
      m1 : I := mantissa f1
      m2 : I := mantissa f2
      e1 : I := exponent f1
      e2 : I := exponent f2
      e1 > e2 => 
--insignificance
         e1 > e2 + POWER + 2 => 
               zero? f1 => f2
               f1 
         normalise [m1*(B pretend I)**((e1-e2) pretend NNI)+m2,e2]$Rep
      e2 > e1 + POWER +2 => 
               zero? f2 => f1
               f2
      normalise [m2*(B pretend I)**((e2-e1) pretend NNI)+m1,e1]$Rep

    - f1 == [- mantissa f1,exponent f1]$Rep

    f1 - f2 == f1 + (-f2)

    f1 < f2 == 
      m1 : I := mantissa f1
      m2 : I := mantissa f2
      e1 : I := exponent f1
      e2 : I := exponent f2
      sign(m1) = sign(m2) =>
        e1 < e2 => true
        e1 = e2 and m1 < m2 => true
        false
      sign(m1) = 1 => false
      sign(m1) = 0 and sign(m2) = -1 => false
      true

    characteristic:NNI == 0

@
\section{domain MCMPLX MachineComplex}
<<domain MCMPLX MachineComplex>>=
)abbrev domain MCMPLX MachineComplex
++ Date Created:  December 1993
++ Date Last Updated:
++ Basic Operations:
++ Related Domains:
++ Also See: FortranExpression, FortranMachineTypeCategory, MachineInteger,
++  MachineFloat
++ AMS Classifications:
++ Keywords:
++ Examples:
++ References:
++ Description: A domain which models the complex number representation
++ used by machines in the AXIOM-NAG link.
MachineComplex():Exports == Implementation where

  Exports ==> Join (FortranMachineTypeCategory,
                    ComplexCategory(MachineFloat)) with
    coerce : Complex Float -> $
      ++ coerce(u) transforms u into a MachineComplex
    coerce : Complex Integer -> $
      ++ coerce(u) transforms u into a MachineComplex
    coerce : Complex MachineFloat -> $
      ++ coerce(u) transforms u into a MachineComplex
    coerce : Complex MachineInteger -> $
      ++ coerce(u) transforms u into a MachineComplex
    coerce : $ -> Complex Float
      ++ coerce(u) transforms u into a COmplex Float

  Implementation ==> Complex MachineFloat add

    coerce(u:Complex Float):$ == 
      complex(real(u)::MachineFloat,imag(u)::MachineFloat)

    coerce(u:Complex Integer):$ ==
      complex(real(u)::MachineFloat,imag(u)::MachineFloat)

    coerce(u:Complex MachineInteger):$ ==
      complex(real(u)::MachineFloat,imag(u)::MachineFloat)

    coerce(u:Complex MachineFloat):$ == 
      complex(real(u),imag(u))

    coerce(u:$):Complex Float ==
      complex(real(u)::Float,imag(u)::Float)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain MINT MachineInteger>>
<<domain MFLOAT MachineFloat>>
<<domain MCMPLX MachineComplex>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}