aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/float.spad.pamphlet
blob: 1721a02d37a8464d6be7cecdadb0a014b9aa5746 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra float.spad}
\author{Michael Monagan}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain FLOAT Float}
As reported in bug number 4733 (rounding of negative numbers)
errors were observed in operations such as
\begin{verbatim}
  -> round(-3.9)
  -> truncate(-3.9)
\end{verbatim}
The problem is the unexpected behaviour of the shift
with negative integer arguments.
\begin{verbatim}
  -> shift(-7,-1)
\end{verbatim}
returns -4 while the code here in float expects the
value to be -3. shift uses the lisp function ASH
'arithmetic shift left' but the spad code expects
an unsigned 'logical' shift. See
\begin{verbatim}
  http://www.lispworks.com/reference/HyperSpec/Body/f_ash.htm#ash
\end{verbatim} 
A new internal function shift2 is defined in terms of
shift to compensate for the use of ASH and provide the
required function.

It is currently unknown whether the unexpected behaviour
of shift for negative arguments will cause bugs in other
parts of Axiom.
<<domain FLOAT Float>>=
)abbrev domain FLOAT Float

B ==> Boolean
I ==> Integer
S ==> String
PI ==> PositiveInteger
RN ==> Fraction Integer
SF ==> DoubleFloat
N ==> NonNegativeInteger

++ Author: Michael Monagan
++ Date Created:
++   December 1987
++ Change History:
++   19 Jun 1990
++ Basic Operations: outputFloating, outputFixed, outputGeneral, outputSpacing,
++   atan, convert, exp1, log2, log10, normalize, rationalApproximation,
++   relerror, shift, / , **
++ Keywords: float, floating point, number
++ Description: \spadtype{Float} implements arbitrary precision floating
++ point arithmetic.
++ The number of significant digits of each operation can be set
++ to an arbitrary value (the default is 20 decimal digits).
++ The operation \spad{float(mantissa,exponent,\spadfunFrom{base}{FloatingPointSystem})} for integer
++ \spad{mantissa}, \spad{exponent} specifies the number
++ \spad{mantissa * \spadfunFrom{base}{FloatingPointSystem} ** exponent}
++ The underlying representation for floats is binary
++ not decimal. The implications of this are described below.
++
++ The model adopted is that arithmetic operations are rounded to
++ to nearest unit in the last place, that is, accurate to within
++ \spad{2**(-\spadfunFrom{bits}{FloatingPointSystem})}.
++ Also, the elementary functions and constants are
++ accurate to one unit in the last place.
++ A float is represented as a record of two integers, the mantissa
++ and the exponent.  The \spadfunFrom{base}{FloatingPointSystem}
++ of the representation is binary, hence
++ a \spad{Record(m:mantissa,e:exponent)} represents the number \spad{m * 2 ** e}.
++ Though it is not assumed that the underlying integers are represented
++ with a binary \spadfunFrom{base}{FloatingPointSystem},
++ the code will be most efficient when this is the
++ the case (this is true in most implementations of Lisp).
++ The decision to choose the \spadfunFrom{base}{FloatingPointSystem} to be
++ binary has some unfortunate
++ consequences.  First, decimal numbers like 0.3 cannot be represented
++ exactly.  Second, there is a further loss of accuracy during
++ conversion to decimal for output.  To compensate for this, if d
++ digits of precision are specified, \spad{1 + ceiling(log2 d)} bits are used.
++ Two numbers that are displayed identically may therefore be
++ not equal.  On the other hand, a significant efficiency loss would
++ be incurred if we chose to use a decimal \spadfunFrom{base}{FloatingPointSystem} when the underlying
++ integer base is binary.
++
++ Algorithms used:
++ For the elementary functions, the general approach is to apply
++ identities so that the taylor series can be used, and, so
++ that it will converge within \spad{O( sqrt n )} steps.  For example,
++ using the identity \spad{exp(x) = exp(x/2)**2}, we can compute
++ \spad{exp(1/3)} to n digits of precision as follows.  We have
++ \spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}.
++ The taylor series will converge in less than sqrt n steps and the
++ exponentiation requires sqrt n multiplications for a total of
++ \spad{2 sqrt n} multiplications.  Assuming integer multiplication costs
++ \spad{O( n**2 )} the overall running time is \spad{O( sqrt(n) n**2 )}.
++ This approach is the best known approach for precisions up to
++ about 10,000 digits at which point the methods of Brent
++ which are \spad{O( log(n) n**2 )} become competitive.  Note also that
++ summing the terms of the taylor series for the elementary
++ functions is done using integer operations.  This avoids the
++ overhead of floating point operations and results in efficient
++ code at low precisions.  This implementation makes no attempt
++ to reuse storage, relying on the underlying system to do
++ \spadgloss{garbage collection}.  I estimate that the efficiency of this
++ package at low precisions could be improved by a factor of 2
++ if in-place operations were available.
++
++ Running times: in the following, n is the number of bits of precision
++      \spad{*}, \spad{/}, \spad{sqrt}, \spad{pi}, \spad{exp1}, \spad{log2}, \spad{log10}: \spad{ O( n**2 )}
++      \spad{exp}, \spad{log}, \spad{sin}, \spad{atan}:  \spad{ O( sqrt(n) n**2 )}
++ The other elementary functions are coded in terms of the ones above.
Float():
 Join(FloatingPointSystem, DifferentialRing, ConvertibleTo String,_
  CoercibleTo DoubleFloat, TranscendentalFunctionCategory, _
    ConvertibleTo InputForm,ConvertibleFrom SF) with
   /  : (%, I) -> %
      ++ x / i computes the division from x by an integer i.
   **: (%, %) -> %
      ++ x ** y computes \spad{exp(y log x)} where \spad{x >= 0}.
   normalize: % -> %
      ++ normalize(x) normalizes x at current precision.
   relerror : (%, %) -> I
      ++ relerror(x,y) computes the absolute value of \spad{x - y} divided by
      ++ y, when \spad{y \~= 0}.
   shift: (%, I) -> %
      ++ shift(x,n) adds n to the exponent of float x.
   rationalApproximation: (%, N) -> RN
     ++ rationalApproximation(f, n) computes a rational approximation
     ++ r to f with relative error \spad{< 10**(-n)}.
   rationalApproximation: (%, N, N) -> RN
     ++ rationalApproximation(f, n, b) computes a rational
     ++ approximation r to f with relative error \spad{< b**(-n)}, that is
     ++ \spad{|(r-f)/f| < b**(-n)}.
   log2 : () -> %
      ++ log2() returns \spad{ln 2}, i.e. \spad{0.6931471805...}.
   log10: () -> %
      ++ log10() returns \spad{ln 10}: \spad{2.3025809299...}.
   exp1 : () -> %
      ++ exp1() returns  exp 1: \spad{2.7182818284...}.
   atan : (%,%) -> %
      ++ atan(x,y) computes the arc tangent from x with phase y.
   log2 : % -> %
      ++ log2(x) computes the logarithm for x to base 2.
   log10: % -> %
      ++ log10(x) computes the logarithm for x to base 10.
   outputFloating: () -> Void
      ++ outputFloating() sets the output mode to floating (scientific) notation, i.e.
      ++ \spad{mantissa * 10 exponent} is displayed as  \spad{0.mantissa E exponent}.
   outputFloating: N -> Void
      ++ outputFloating(n) sets the output mode to floating (scientific) notation
      ++ with n significant digits displayed after the decimal point.
   outputFixed: () -> Void
      ++ outputFixed() sets the output mode to fixed point notation;
      ++ the output will contain a decimal point.
   outputFixed: N -> Void
      ++ outputFixed(n) sets the output mode to fixed point notation,
      ++ with n digits displayed after the decimal point.
   outputGeneral: () -> Void
      ++ outputGeneral() sets the output mode (default mode) to general
      ++ notation; numbers will be displayed in either fixed or floating
      ++ (scientific) notation depending on the magnitude.
   outputGeneral: N -> Void
      ++ outputGeneral(n) sets the output mode to general notation
      ++ with n significant digits displayed.
   outputSpacing: N -> Void
      ++ outputSpacing(n) inserts a space after n (default 10) digits on output;
      ++ outputSpacing(0) means no spaces are inserted.
   arbitraryPrecision
   arbitraryExponent
  == add
   BASE ==> 2
   BITS:Reference(PI) := ref 68 -- 20 digits
   LENGTH ==> %ilength$Foreign(Builtin)
   ISQRT ==> approxSqrt$IntegerRoots(I)
   Rep := Record( mantissa:I, exponent:I )
   StoredConstant ==> Record( precision:PI, value:% )
   UCA ==> Record( unit:%, coef:%, associate:% )
   inc ==> increasePrecision
   dec ==> decreasePrecision

   -- local utility operations
   shift2 : (I,I) -> I           -- WSP: fix bug in shift
   times : (%,%) -> %            -- multiply x and y with no rounding
   itimes: (I,%) -> %            -- multiply by a small integer
   chop: (%,PI) -> %             -- chop x at p bits of precision
   dvide: (%,%) -> %             -- divide x by y with no rounding
   square: (%,I) -> %            -- repeated squaring with chopping
   power: (%,I) -> %             -- x ** n with chopping
   plus: (%,%) -> %              -- addition with no rounding
   sub: (%,%) -> %               -- subtraction with no rounding
   negate: % -> %                -- negation with no rounding
   ceillog10base2: PI -> PI      -- rational approximation
   floorln2: PI -> PI            -- rational approximation

   atanSeries: % -> %            -- atan(x) by taylor series |x| < 1/2
   atanInverse: I -> %           -- atan(1/n) for n an integer > 1
   expInverse: I -> %            -- exp(1/n) for n an integer
   expSeries: % -> %             -- exp(x) by taylor series  |x| < 1/2
   logSeries: % -> %             -- log(x) by taylor series 1/2 < x < 2
   sinSeries: % -> %             -- sin(x) by taylor series |x| < 1/2
   cosSeries: % -> %             -- cos(x) by taylor series |x| < 1/2
   piRamanujan: () -> %          -- pi using Ramanujans series

   shift2(x,y) == sign(x)*shift(sign(x)*x,y)

   asin x ==
      zero? x => 0
      negative? x => -asin(-x)
      one? x => pi()/2
      x > 1 => error "asin: argument > 1 in magnitude"
      inc 5; r := atan(x/sqrt(sub(1,times(x,x)))); dec 5
      normalize r

   acos x ==
      zero? x => pi()/2
      negative? x => (inc 3; r := pi()-acos(-x); dec 3; normalize r)
      one? x => 0
      x > 1 => error "acos: argument > 1 in magnitude"
      inc 5; r := atan(sqrt(sub(1,times(x,x)))/x); dec 5
      normalize r

   atan(x,y) ==
      x = 0 =>
         positive? y => pi()/2
         negative? y => -pi()/2
         0
      -- Only count on first quadrant being on principal branch.
      theta := atan abs(y/x)
      if negative? x then theta := pi() - theta
      if negative? y then theta := - theta
      theta

   atan x ==
      zero? x => 0
      negative? x => -atan(-x)
      if x > 1 then
         inc 4
         r := if zero? fractionPart x and x < [bits(),0] then atanInverse wholePart x
                 else atan(1/x)
         r := pi()/2 - r
         dec 4
         return normalize r
      -- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
      -- by using the formula  atan(x) = 2*atan(x/(1+sqrt(1+x**2)))
      k := ISQRT (bits()-100)::I quo 5
      k := max(0,2 + k + order x)
      inc(2*k)
      for i in 1..k repeat x := x/(1+sqrt(1+x*x))
      t := atanSeries x
      dec(2*k)
      t := shift(t,k)
      normalize t

   atanSeries x ==
      -- atan(x) = x (1 - x**2/3 + x**4/5 - x**6/7 + ...)  |x| < 1
      p := bits() + LENGTH bits() + 2
      s:I := d:I := shift(1,p)
      y := times(x,x)
      t := m := - shift2(y.mantissa,y.exponent+p)
      for i in 3.. by 2 while t ~= 0 repeat
         s := s + t quo i
         t := (m * t) quo d
      x * [s,-p]

   atanInverse n ==
      -- compute atan(1/n) for an integer n > 1
      -- atan n = 1/n - 1/n**3/3 + 1/n**5/4 - ...
      --   pi = 16 atan(1/5) - 4 atan(1/239)
      n2 := -n*n
      e:I := bits() + LENGTH bits() + LENGTH n + 1
      s:I := shift(1,e) quo n
      t:I := s quo n2
      for k in 3.. by 2 while t ~= 0 repeat
         s := s + t quo k
         t := t quo n2
      normalize [s,-e]

   sin x ==
      s := sign x; x := abs x; p := bits(); inc 4
      if x > [6,0] then (inc p; x := 2*pi()*fractionPart(x/pi()/2); bits p)
      if x > [3,0] then (inc p; s := -s; x := x - pi(); bits p)
      if x > [3,-1] then (inc p; x := pi() - x; dec p)
      -- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
      -- by using the formula  sin(3*x/3) = 3 sin(x/3) - 4 sin(x/3)**3
      -- the running time is O( sqrt p M(p) ) assuming |x| < 1
      k := ISQRT (bits()-100)::I quo 4
      k := max(0,2 + k + order x)
      if positive? k then (inc k; x := x / 3**k::N)
      r := sinSeries x
      for i in 1..k repeat r := itimes(3,r)-shift(r**3,2)
      bits p
      s * r

   sinSeries x ==
      -- sin(x) = x (1 - x**2/3! + x**4/5! - x**6/7! + ... |x| < 1/2
      p := bits() + LENGTH bits() + 2
      y := times(x,x)
      s:I := d:I := shift(1,p)
      m:I := - shift2(y.mantissa,y.exponent+p)
      t:I := m quo 6
      for i in 4.. by 2 while t ~= 0 repeat
         s := s + t
         t := (m * t) quo (i*(i+1))
         t := t quo d
      x * [s,-p]

   cos x ==
     s:I := 1; x := abs x; p := bits(); inc 4
     if x > [6,0] then (inc p; x := 2*pi()*fractionPart(x/pi()/2); dec p)
     if x > [3,0] then (inc p; s := -s; x := x-pi(); dec p)
     if x > [1,0] then
         -- take care of the accuracy problem near pi/2
         inc p; x := pi()/2-x; bits p; x := normalize x
         return (s * sin x)
      -- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
      -- by using the formula  cos(2*x/2) = 2 cos(x/2)**2 - 1
      -- the running time is O( sqrt p M(p) ) assuming |x| < 1
     k := ISQRT (bits()-100)::I quo 3
     k := max(0,2 + k + order x)
      -- need to increase precision by more than k, otherwise recursion
      -- causes loss of accuracy.
      -- Michael Monagan suggests adding a factor of log(k)
     if positive? k then (inc(k+length(k)**2); x := shift(x,-k))
     r := cosSeries x
     for i in 1..k repeat r := shift(r*r,1)-1
     bits p
     s * r



   cosSeries x ==
      -- cos(x) = 1 - x**2/2! + x**4/4! - x**6/6! + ... |x| < 1/2
      p := bits() + LENGTH bits() + 1
      y := times(x,x)
      s:I := d:I := shift(1,p)
      m:I := - shift2(y.mantissa,y.exponent+p)
      t:I := m quo 2
      for i in 3.. by 2 while t ~= 0 repeat
         s := s + t
         t := (m * t) quo (i*(i+1))
         t := t quo d
      normalize [s,-p]

   tan x ==
      s := sign x; x := abs x; p := bits(); inc 6
      if x > [3,0] then (inc p; x := pi()*fractionPart(x/pi()); dec p)
      if x > [3,-1] then (inc p; x := pi()-x; s := -s; dec p)
      if x > 1 then (c := cos x; t := sqrt(1-c*c)/c)
      else (c := sin x; t := c/sqrt(1-c*c))
      bits p
      s * t

   P:StoredConstant := [1,[1,2]]
   pi() ==
      -- We use Ramanujan's identity to compute pi.
      -- The running time is quadratic in the precision.
      -- This is about twice as fast as Machin's identity on Lisp/VM
      --   pi = 16 atan(1/5) - 4 atan(1/239)
      bits() <= P.precision => normalize P.value
      (P := [bits(), piRamanujan()]) value

   piRamanujan() ==
      -- Ramanujans identity for 1/pi
      -- Reference: Shanks and Wrench, Math Comp, 1962
      -- "Calculation of pi to 100,000 Decimals".
      n := bits() + LENGTH bits() + 11
      t:I := shift(1,n) quo 882
      d:I := 4*882**2
      s:I := 0
      for i in 2.. by 2 for j in 1123.. by 21460 while t ~= 0 repeat
         s := s + j*t
         m := -(i-1)*(2*i-1)*(2*i-3)
         t := (m*t) quo (d*i**3)
      1 / [s,-n-2]

   sinh x ==
      zero? x => 0
      lost:I := max(- order x,0)
      2*lost > bits() => x
      inc(5+lost); e := exp x; s := (e-1/e)/2; dec(5+lost)
      normalize s

   cosh x ==
      (inc 5; e := exp x; c := (e+1/e)/2; dec 5; normalize c)

   tanh x ==
      zero? x => 0
      lost:I := max(- order x,0)
      2*lost > bits() => x
      inc(6+lost); e := exp x; e := e*e; t := (e-1)/(e+1); dec(6+lost)
      normalize t

   asinh x ==
      p := min(0,order x)
      if zero? x or 2*p < -bits() then return x
      inc(5-p); r := log(x+sqrt(1+x*x)); dec(5-p)
      normalize r

   acosh x ==
      if x < 1 then error "invalid argument to acosh"
      inc 5; r := log(x+sqrt(sub(times(x,x),1))); dec 5
      normalize r

   atanh x ==
      if x > 1 or x < -1 then error "invalid argument to atanh"
      p := min(0,order x)
      if zero? x or 2*p < -bits() then return x
      inc(5-p); r := log((x+1)/(1-x))/2; dec(5-p)
      normalize r

   log x ==
      negative? x => error "negative log"
      zero? x => error "log 0 generated"
      p := bits(); inc 5
      -- apply  log(x) = n log 2 + log(x/2**n)  so that  1/2 < x < 2
      if negative?(n := order x) then n := n+1
      l: % :=
        n = 0 => 0
        x := shift(x,-n)
        n * log2()
      -- speed the series convergence by finding m and k such that
      -- | exp(m/2**k) x - 1 |  <  1 / 2 ** O(sqrt p)
      -- write  log(exp(m/2**k) x) as m/2**k + log x
      k := ISQRT (p-100)::I quo 3
      if k > 1 then
         k := max(1,k+order(x-1))
         inc k
         ek := expInverse (2**k::N)
         dec(p quo 2); m := order square(x,k); inc(p quo 2)
         m := (6847196937 * m) quo 9878417065   -- m := m log 2
         x := x * ek ** (-m)
         l := l + [m,-k]
      l := l + logSeries x
      bits p
      normalize l

   logSeries x ==
      -- log(x) = 2 y (1 + y**2/3 + y**4/5 ...)  for  y = (x-1) / (x+1)
      -- given 1/2 < x < 2 on input we have -1/3 < y < 1/3
      p := bits() + (g := LENGTH bits() + 3)
      inc g; y := (x-1)/(x+1); dec g
      s:I := d:I := shift(1,p)
      z := times(y,y)
      t := m := shift2(z.mantissa,z.exponent+p)
      for i in 3.. by 2 while t ~= 0 repeat
         s := s + t quo i
         t := m * t quo d
      y * [s,1-p]

   L2:StoredConstant := [1,1]
   log2() ==
      --  log x  =  2 * sum( ((x-1)/(x+1))**(2*k+1)/(2*k+1), k=1.. )
      --  log 2  =  2 * sum( 1/9**k / (2*k+1), k=0..n ) / 3
      n := bits() :: N
      n <= L2.precision => normalize L2.value
      n := n + LENGTH n + 3  -- guard bits
      s:I := shift(1,n+1) quo 3
      t:I := s quo 9
      for k in 3.. by 2 while t ~= 0 repeat
         s := s + t quo k
         t := t quo 9
      L2 := [bits(),[s,-n]]
      normalize L2.value

   L10:StoredConstant := [1,[1,1]]
   log10() ==
      --  log x  =  2 * sum( ((x-1)/(x+1))**(2*k+1)/(2*k+1), k=0.. )
      --  log 5/4  =  2 * sum( 1/81**k / (2*k+1), k=0.. ) / 9
      n := bits() :: N
      n <= L10.precision => normalize L10.value
      n := n + LENGTH n + 5  -- guard bits
      s:I := shift(1,n+1) quo 9
      t:I := s quo 81
      for k in 3.. by 2 while t ~= 0 repeat
         s := s + t quo k
         t := t quo 81
      -- We have log 10 = log 5 + log 2 and log 5/4 = log 5 - 2 log 2
      inc 2; L10 := [bits(),[s,-n] + 3*log2()]; dec 2
      normalize L10.value

   log2(x) == (inc 2; r := log(x)/log2(); dec 2; normalize r)
   log10(x) == (inc 2; r := log(x)/log10(); dec 2; normalize r)

   exp(x) ==
      -- exp(n+x) = exp(1)**n exp(x) for n such that |x| < 1
      p := bits(); inc 5; e1:% := 1
      if (n := wholePart x) ~= 0 then
         inc LENGTH n; e1 := exp1() ** n; dec LENGTH n
         x := fractionPart x
      if zero? x then (bits p; return normalize e1)
      -- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
      -- by repeated use of the formula exp(2*x/2) = exp(x/2)**2
      -- results in an overall running time of O( sqrt p M(p) )
      k := ISQRT (p-100)::I quo 3
      k := max(0,2 + k + order x)
      if positive? k then (inc k; x := shift(x,-k))
      e := expSeries x
      if positive? k then e := square(e,k)
      bits p
      e * e1

   expSeries x ==
      -- exp(x) = 1 + x + x**2/2 + ... + x**i/i!  valid for all x
      p := bits() + LENGTH bits() + 1
      s:I := d:I := shift(1,p)
      t:I := n:I := shift2(x.mantissa,x.exponent+p)
      for i in 2.. while t ~= 0 repeat
         s := s + t
         t := (n * t) quo i
         t := t quo d
      normalize [s,-p]

   expInverse k ==
      -- computes exp(1/k) via continued fraction
      p0:I := 2*k+1; p1:I := 6*k*p0+1
      q0:I := 2*k-1; q1:I := 6*k*q0+1
      for i in 10*k.. by 4*k while 2 * LENGTH p0 < bits() repeat
         (p0,p1) := (p1,i*p1+p0)
         (q0,q1) := (q1,i*q1+q0)
      dvide([p1,0],[q1,0])

   E:StoredConstant := [1,[1,1]]
   exp1() ==
      if bits() > E.precision then E := [bits(),expInverse 1]
      normalize E.value

   sqrt x ==
      negative? x => error "negative sqrt"
      m := x.mantissa; e := x.exponent
      l := LENGTH m
      p := 2 * bits() - l + 2
      if odd?(e-l) then p := p - 1
      i := shift2(x.mantissa,p)
      -- ISQRT uses a variable precision newton iteration
      i := ISQRT i
      normalize [i,(e-p) quo 2]

   bits() == deref BITS
   bits(n) == (t := bits(); setref(BITS,n); t)
   precision() == bits()
   precision(n) == bits(n)
   increasePrecision n == (b := bits(); bits((b + n)::PI); b)
   decreasePrecision n == (b := bits(); bits((b - n)::PI); b)
   ceillog10base2 n == ((13301 * n + 4003) quo 4004) :: PI
   digits() == max(1,4004 * (bits()-1) quo 13301)::PI
   digits(n) == (t := digits(); bits (1 + ceillog10base2 n); t)

   order(a) == LENGTH a.mantissa + a.exponent - 1
   relerror(a,b) == order((a-b)/b)
   0 == [0,0]
   1 == [1,0]
   base() == BASE
   mantissa x == x.mantissa
   exponent x == x.exponent
   one? a == a = 1
   zero? a == zero?(a.mantissa)
   negative? a == negative?(a.mantissa)
   positive? a == positive?(a.mantissa)

   chop(x,p) ==
      e : I := LENGTH x.mantissa - p
      if positive? e then x := [shift2(x.mantissa,-e),x.exponent+e]
      x
   float(m,e) == normalize [m,e]
   float(m,e,b) ==
      m = 0 => 0
      inc 4; r := m * [b,0] ** e; dec 4
      normalize r
   normalize x ==
      m := x.mantissa
      m = 0 => 0
      e : I := LENGTH m - bits()
      if positive? e then
         y := shift2(m,1-e)
         if odd? y then
            y := (if positive? y then y+1 else y-1) quo 2
            if LENGTH y > bits() then
               y := y quo 2
               e := e+1
         else y := y quo 2
         x := [y,x.exponent+e]
      x
   shift(x:%,n:I) == [x.mantissa,x.exponent+n]

   x = y ==
      order x = order y and sign x = sign y and zero? (x - y)
   x < y ==
      y.mantissa = 0 => negative? x.mantissa
      x.mantissa = 0 => positive? y.mantissa
      negative? x and positive? y => true
      negative? y and positive? x => false
      order x < order y => positive? x
      order x > order y => negative? x
      negative? (x-y)

   abs x == if negative? x then -x else normalize x
   ceiling x ==
      if negative? x then return (-floor(-x))
      if zero? fractionPart x then x else truncate x + 1
   wholePart x == shift2(x.mantissa,x.exponent)
   floor x == if negative? x then -ceiling(-x) else truncate x
   round x == (half := [sign x,-1]; truncate(x + half))
   sign x == if negative? x.mantissa then -1 else 1
   truncate x ==
      if x.exponent >= 0 then return x
      normalize [shift2(x.mantissa,x.exponent),0]
   recip(x) == if x=0 then "failed" else 1/x
   differentiate x == 0

   - x == normalize negate x
   negate x == [-x.mantissa,x.exponent]
   x + y == normalize plus(x,y)
   x - y == normalize plus(x,negate y)
   sub(x,y) == plus(x,negate y)
   plus(x,y) ==
      mx := x.mantissa; my := y.mantissa
      mx = 0 => y
      my = 0 => x
      ex := x.exponent; ey := y.exponent
      ex = ey => [mx+my,ex]
      de := ex + LENGTH mx - ey - LENGTH my
      de > bits()+1 => x
      de < -(bits()+1) => y
      if ex < ey then (mx,my,ex,ey) := (my,mx,ey,ex)
      mw := my + shift2(mx,ex-ey)
      [mw,ey]

   x:% * y:% == normalize times (x,y)
   x:I * y:% ==
      if LENGTH x > bits() then normalize [x,0] * y
      else normalize [x * y.mantissa,y.exponent]
   x:% / y:% == normalize dvide(x,y)
   x:% / y:I ==
      if LENGTH y > bits() then x / normalize [y,0] else x / [y,0]
   inv x == 1 / x

   times(x:%,y:%) == [x.mantissa * y.mantissa, x.exponent + y.exponent]
   itimes(n:I,y:%) == [n * y.mantissa,y.exponent]

   dvide(x,y) ==
      ew := LENGTH y.mantissa - LENGTH x.mantissa + bits() + 1
      mw := shift2(x.mantissa,ew) quo y.mantissa
      ew := x.exponent - y.exponent - ew
      [mw,ew]

   square(x,n) ==
      ma := x.mantissa; ex := x.exponent
      for k in 1..n repeat
         ma := ma * ma; ex := ex + ex
         l:I := bits()::I - LENGTH ma
         ma := shift2(ma,l); ex := ex - l
      [ma,ex]

   power(x,n) ==
      y:% := 1; z:% := x
      repeat
         if odd? n then y := chop( times(y,z), bits() )
         if (n := n quo 2) = 0 then return y
         z := chop( times(z,z), bits() )

   x:% ** y:% ==
      x = 0 =>
         y = 0 => error "0**0 is undefined"
         negative? y => error "division by 0"
         0
      y = 0 => 1
      y = 1 => x
      x = 1 => 1
      p := abs order y + 5
      inc p; r := exp(y*log(x)); dec p
      normalize r

   x:% ** r:RN ==
      x = 0 =>
         r = 0 => error "0**0 is undefined"
         negative? r => error "division by 0"
         0
      r = 0 => 1
      r = 1 => x
      x = 1 => 1
      n := numer r
      d := denom r
      negative? x =>
         odd? d =>
            odd? n => return -((-x)**r)
            return ((-x)**r)
         error "negative root"
      if d = 2 then
         inc LENGTH n; y := sqrt(x); y := y**n; dec LENGTH n
         return normalize y
      y := [n,0]/[d,0]
      x ** y

   x:% ** n:I ==
      x = 0 =>
         n = 0 => error "0**0 is undefined"
         negative? n => error "division by 0"
         0
      n = 0 => 1
      n = 1 => x
      x = 1 => 1
      p := bits()
      bits(p + LENGTH n + 2)
      y := power(x,abs n)
      if negative? n then y := dvide(1,y)
      bits p
      normalize y

   -- Utility routines for conversion to decimal
   ceilLength10: I -> I
   chop10: (%,I) -> %
   convert10:(%,I) -> %
   floorLength10: I -> I
   length10: I -> I
   normalize10: (%,I) -> %
   quotient10: (%,%,I) -> %
   power10: (%,I,I) -> %
   times10: (%,%,I) -> %

   convert10(x,d) ==
      m := x.mantissa; e := x.exponent
      --!! deal with bits here
      b := bits(); (q,r) := divide(abs e, b)
      b := 2**b::N; r := 2**r::N
      -- compute 2**e = b**q * r
      h := power10([b,0],q,d+5)
      h := chop10([r*h.mantissa,h.exponent],d+5)
      if negative? e then h := quotient10([m,0],h,d)
      else times10([m,0],h,d)

   ceilLength10 n == 146 * LENGTH n quo 485 + 1
   floorLength10 n == 643 *  LENGTH n quo 2136
   length10 n ==
      ln := LENGTH(n:=abs n)
      upper := 76573 * ln quo 254370
      lower := 21306 * (ln-1) quo 70777
      upper = lower => upper + 1
      n := n quo (10**lower::N)
      while n >= 10 repeat
         n:= n quo 10
         lower := lower + 1
      lower + 1

   chop10(x,p) ==
      e : I := floorLength10 x.mantissa - p
      if positive? e then x := [x.mantissa quo 10**e::N,x.exponent+e]
      x
   normalize10(x,p) ==
      ma := x.mantissa
      ex := x.exponent
      e : I := length10 ma - p
      if positive? e then
         ma := ma quo 10**(e-1)::N
         ex := ex + e
         (ma,r) := divide(ma, 10)
         if r > 4 then
            ma := ma + 1
            if ma = 10**p::N then (ma := 1; ex := ex + p)
      [ma,ex]
   times10(x,y,p) == normalize10(times(x,y),p)
   quotient10(x,y,p) ==
      ew := floorLength10 y.mantissa - ceilLength10 x.mantissa + p + 2
      if negative? ew then ew := 0
      mw := (x.mantissa * 10**ew::N) quo y.mantissa
      ew := x.exponent - y.exponent - ew
      normalize10([mw,ew],p)
   power10(x,n,d) ==
      x = 0 => 0
      n = 0 => 1
      n = 1 => x
      x = 1 => 1
      p:I := d + LENGTH n + 1
      e:I := n
      y:% := 1
      z:% := x
      repeat
         if odd? e then y := chop10(times(y,z),p)
         if (e := e quo 2) = 0 then return y
         z := chop10(times(z,z),p)

   --------------------------------
   -- Output routines for Floats --
   --------------------------------
   zero ==> char("0")
   separator ==> space()$Character

   SPACING : Reference(N) := ref 10
   OUTMODE : Reference(S) := ref "general"
   OUTPREC : Reference(I) := ref(-1)

   fixed : % -> S
   floating : % -> S
   general : % -> S

   padFromLeft(s:S):S ==
      zero? deref SPACING => s
      n:I := #s - 1
      t := new( (n + 1 + n quo deref SPACING) :: N , separator )
      for i in 0..n for j in minIndex t .. repeat
         t.j := s.(i + minIndex s)
         if (i+1) rem deref SPACING = 0 then j := j+1
      t
   padFromRight(s:S):S ==
      deref SPACING = 0 => s
      n:I := #s - 1
      t := new( (n + 1 + n quo deref SPACING) :: N , separator )
      for i in n..0 by -1 for j in maxIndex t .. by -1 repeat
         t.j := s.(i + minIndex s)
         if (n-i+1) rem deref SPACING = 0 then j := j-1
      t

   fixed f ==
      zero? f => "0.0"
      zero? exponent f =>
        padFromRight concat(string mantissa f, ".0")
      negative? f => concat("-", fixed abs f)
      d := if deref OUTPREC = -1 then digits()::I else deref OUTPREC
--    g := convert10(abs f,digits); m := g.mantissa; e := g.exponent
      g := convert10(abs f,d); m := g.mantissa; e := g.exponent
      if deref OUTPREC ~= -1 then
         -- round g to OUTPREC digits after the decimal point
         l := length10 m
         if -e > deref OUTPREC and -e < 2*digits()::I then
            g := normalize10(g,l+e+deref OUTPREC)
            m := g.mantissa; e := g.exponent
      s := string m; n := #s; o := e+n
      p := if deref OUTPREC = -1 then n::I else deref OUTPREC
      t:S
      if e >= 0 then
         s := concat(s, new(e::N, zero))
         t := ""
      else if o <= 0 then
         t := concat(new((-o)::N,zero), s)
         s := "0"
      else
         t := s(o + minIndex s .. n + minIndex s - 1)
         s := s(minIndex s .. o + minIndex s - 1)
      n := #t
      if deref OUTPREC = -1 then
         t := rightTrim(t,zero)
         if t = "" then t := "0"
      else if n > p then t := t(minIndex t .. p + minIndex t- 1)
                    else t := concat(t, new((p-n)::N,zero))
      concat(padFromRight s, concat(".", padFromLeft t))

   floating f ==
      zero? f => "0.0"
      negative? f => concat("-", floating abs f)
      t:S := if zero? deref SPACING then "E" else " E "
      zero? exponent f =>
        s := string mantissa f
        concat ["0.", padFromLeft s, t, string(#s)]
      -- base conversion to decimal rounded to the requested precision
      d := if deref OUTPREC = -1 then digits()::I else deref OUTPREC
      g := convert10(f,d); m := g.mantissa; e := g.exponent
      -- I'm assuming that length10 m = # s given n > 0
      s := string m; n := #s; o := e+n
      s := padFromLeft s
      concat ["0.", s, t, string o]

   general(f) ==
      zero? f => "0.0"
      negative? f => concat("-", general abs f)
      d := if deref OUTPREC = -1 then digits()::I else deref OUTPREC
      zero? exponent f =>
        d := d + 1
        s := string mantissa f
        deref OUTPREC ~= -1 and (e := #s) > d =>
          t:S := if zero? deref SPACING then "E" else " E "
          concat ["0.", padFromLeft s, t, string e]
        padFromRight concat(s, ".0")
      -- base conversion to decimal rounded to the requested precision
      g := convert10(f,d); m := g.mantissa; e := g.exponent
      -- I'm assuming that length10 m = # s given n > 0
      s := string m; n := #s; o := n + e
      -- Note: at least one digit is displayed after the decimal point
      -- and trailing zeroes after the decimal point are dropped
      if positive? o and o <= max(n,d) then
         -- fixed format: add trailing zeroes before the decimal point
         if o > n then s := concat(s, new((o-n)::N,zero))
         t := rightTrim(s(o + minIndex s .. n + minIndex s - 1), zero)
         if t = "" then t := "0" else t := padFromLeft t
         s := padFromRight s(minIndex s .. o + minIndex s - 1)
         concat(s, concat(".", t))
      else if o <= 0 and o >= -5 then
         -- fixed format: up to 5 leading zeroes after the decimal point
         concat("0.",padFromLeft concat(new((-o)::N,zero),rightTrim(s,zero)))
      else
         -- print using E format written  0.mantissa E exponent
         t := padFromLeft rightTrim(s,zero)
         s := if zero? deref SPACING then "E" else " E "
         concat ["0.", t, s, string(e+n)]

   outputSpacing n == setref(SPACING,n)
   outputFixed() == (setref(OUTMODE,"fixed"); setref(OUTPREC, -1))
   outputFixed n == (setref(OUTMODE,"fixed"); setref(OUTPREC,n::I))
   outputGeneral() == (setref(OUTMODE,"general"); setref(OUTPREC,-1))
   outputGeneral n == (setref(OUTMODE,"general"); setref(OUTPREC,n::I))
   outputFloating() == (setref(OUTMODE,"floating"); setref(OUTPREC,-1))
   outputFloating n == (setref(OUTMODE,"floating"); setref(OUTPREC,n::I))

   convert(f):S ==
      b:Integer :=
        deref OUTPREC = -1 and not zero? f =>
          bits(length(abs mantissa f)::PositiveInteger)
        0
      s :=
        deref OUTMODE = "fixed" => fixed f
        deref OUTMODE = "floating" => floating f
        deref OUTMODE = "general" => general f
        empty()$String
      if positive? b then bits(b::PositiveInteger)
      s = empty()$String => error "bad output mode"
      s

   coerce(f):OutputForm ==
     f >= 0 => message(convert(f)@S)
     - (coerce(-f)@OutputForm)

   convert(f):InputForm ==
     convert [convert('float), convert mantissa f,
              convert exponent f, convert base()]$List(InputForm)

   -- Conversion routines
   convert(x:%):Float == x pretend Float
   convert(x:%):SF == makeSF(x.mantissa,x.exponent)$Lisp
   coerce(x:%):SF == convert(x)@SF
   convert(sf:SF):% == float(mantissa sf,exponent sf,base()$SF)

   retract(f:%):RN == rationalApproximation(f,(bits()-1)::N,BASE)

   retractIfCan(f:%):Union(RN, "failed") ==
     rationalApproximation(f,(bits()-1)::N,BASE)

   retract(f:%):I ==
     (f = (n := wholePart f)::%) => n
     error "Not an integer"

   retractIfCan(f:%):Union(I, "failed") ==
     (f = (n := wholePart f)::%) => n
     "failed"

   rationalApproximation(f,d) == rationalApproximation(f,d,10)

   rationalApproximation(f,d,b) ==
      t: Integer
      nu := f.mantissa; ex := f.exponent
      if ex >= 0 then return ((nu*BASE**(ex::N))/1)
      de := BASE**((-ex)::N)
      if b < 2 then error "base must be > 1"
      tol := b**d
      s := nu; t := de
      p0,p1,q0,q1 : Integer
      p0 := 0; p1 := 1; q0 := 1; q1 := 0
      repeat
         (q,r) := divide(s, t)
         p2 := q*p1+p0
         q2 := q*q1+q0
         if r = 0 or tol*abs(nu*q2-de*p2) < de*abs(p2) then return (p2/q2)
         (p0,p1) := (p1,p2)
         (q0,q1) := (q1,q2)
         (s,t) := (t,r)

@

--% Float: arbitrary precision floating point arithmetic domain

\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2010, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain FLOAT Float>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}