1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra ffnb.spad}
\author{Johannes Grabmeier, Alfred Scheerhorn}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\begin{verbatim}
-- 28.01.93: AS and JG: setting of initlog?, initmult?, and initelt? flags in
-- functions initializeLog, initializeMult and initializeElt put at the
-- end to avoid errors with interruption.
-- factorsOfCyclicGroupSize() changed.
-- 12.05.92: JG: long lines
-- 25.02.92: AS: parametrization of FFNBP changed, compatible to old
-- parametrization. Along with this some changes concerning
-- global variables and deletion of impl. of represents.
-- 25.02.92: AS: parameter in implementation of FFNB,FFNBX changed:
-- Extension now generated by
-- createLowComplexityNormalBasis(extdeg)$FFF(GF)
-- 25.02.92: AS added following functions in FFNBP: degree,
-- linearAssociatedExp,linearAssociatedLog,linearAssociatedOrder
-- 19.02.92: AS: FFNBP trace + norm added.
-- 18.02.92: AS: INBFF normalElement corrected. The old one returned a wrong
-- result for a FFNBP(FFNBP(..)) domain.
\end{verbatim}
\section{package INBFF InnerNormalBasisFieldFunctions}
<<package INBFF InnerNormalBasisFieldFunctions>>=
)abbrev package INBFF InnerNormalBasisFieldFunctions
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ Date Last Updated: 31 March 1991
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: finite field, normal basis
++ References:
++ R.Lidl, H.Niederreiter: Finite Field, Encyclopedia of Mathematics and
++ Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++ D.R.Stinson: Some observations on parallel Algorithms for fast
++ exponentiation in GF(2^n), Siam J. Comp., Vol.19, No.4, pp.711-717,
++ August 1990
++ T.Itoh, S.Tsujii: A fast algorithm for computing multiplicative inverses
++ in GF(2^m) using normal bases, Inf. and Comp. 78, pp.171-177, 1988
++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++ AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++ InnerNormalBasisFieldFunctions(GF) (unexposed):
++ This package has functions used by
++ every normal basis finite field extension domain.
InnerNormalBasisFieldFunctions(GF): Exports == Implementation where
GF : FiniteFieldCategory -- the ground field
PI ==> PositiveInteger
NNI ==> NonNegativeInteger
I ==> Integer
SI ==> SingleInteger
SUP ==> SparseUnivariatePolynomial
VGF ==> Vector GF
M ==> Matrix
V ==> Vector
L ==> List
OUT ==> OutputForm
TERM ==> Record(value:GF,index:SI)
MM ==> ModMonic(GF,SUP GF)
Exports ==> with
setFieldInfo: (V L TERM,GF) -> Void
++ setFieldInfo(m,p) initializes the field arithmetic, where m is
++ the multiplication table and p is the respective normal element
++ of the ground field GF.
random : PI -> VGF
++ random(n) creates a vector over the ground field with random entries.
index : (PI,PI) -> VGF
++ index(n,m) is a index function for vectors of length n over
++ the ground field.
pol : VGF -> SUP GF
++ pol(v) turns the vector \spad{[v0,...,vn]} into the polynomial
++ \spad{v0+v1*x+ ... + vn*x**n}.
xn : NNI -> SUP GF
++ xn(n) returns the polynomial \spad{x**n-1}.
dAndcExp : (VGF,NNI,SI) -> VGF
++ dAndcExp(v,n,k) computes \spad{v**e} interpreting v as an element of
++ normal basis field. A divide and conquer algorithm similar to the
++ one from D.R.Stinson,
++ "Some observations on parallel Algorithms for fast exponentiation in
++ GF(2^n)", Siam J. Computation, Vol.19, No.4, pp.711-717, August 1990
++ is used. Argument k is a parameter of this algorithm.
repSq : (VGF,NNI) -> VGF
++ repSq(v,e) computes \spad{v**e} by repeated squaring,
++ interpreting v as an element of a normal basis field.
expPot : (VGF,SI,SI) -> VGF
++ expPot(v,e,d) returns the sum from \spad{i = 0} to
++ \spad{e - 1} of \spad{v**(q**i*d)}, interpreting
++ v as an element of a normal basis field and where q is
++ the size of the ground field.
++ Note: for a description of the algorithm, see T.Itoh and S.Tsujii,
++ "A fast algorithm for computing multiplicative inverses in GF(2^m)
++ using normal bases",
++ Information and Computation 78, pp.171-177, 1988.
qPot : (VGF,I) -> VGF
++ qPot(v,e) computes \spad{v**(q**e)}, interpreting v as an element of
++ normal basis field, q the size of the ground field.
++ This is done by a cyclic e-shift of the vector v.
-- the semantic of the following functions is obvious from the finite field
-- context, for description see category FAXF
** :(VGF,I) -> VGF
++ x**n \undocumented{}
++ See \axiomFunFrom{**}{DivisionRing}
* :(VGF,VGF) -> VGF
++ x*y \undocumented{}
++ See \axiomFunFrom{*}{SemiGroup}
/ :(VGF,VGF) -> VGF
++ x/y \undocumented{}
++ See \axiomFunFrom{/}{Field}
norm :(VGF,PI) -> VGF
++ norm(x,n) \undocumented{}
++ See \axiomFunFrom{norm}{FiniteAlgebraicExtensionField}
trace :(VGF,PI) -> VGF
++ trace(x,n) \undocumented{}
++ See \axiomFunFrom{trace}{FiniteAlgebraicExtensionField}
inv : VGF -> VGF
++ inv x \undocumented{}
++ See \axiomFunFrom{inv}{DivisionRing}
lookup : VGF -> PI
++ lookup(x) \undocumented{}
++ See \axiomFunFrom{lookup}{Finite}
normal? : VGF -> Boolean
++ normal?(x) \undocumented{}
++ See \axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}
basis : PI -> V VGF
++ basis(n) \undocumented{}
++ See \axiomFunFrom{basis}{FiniteAlgebraicExtensionField}
normalElement:PI -> VGF
++ normalElement(n) \undocumented{}
++ See \axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}
minimalPolynomial: VGF -> SUP GF
++ minimalPolynomial(x) \undocumented{}
++ See \axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}
Implementation ==> add
-- global variables ===================================================
sizeGF:NNI:=size()$GF
-- the size of the ground field
multTable:V L TERM:=new(1,nil()$(L TERM))$(V L TERM)
-- global variable containing the multiplication table
trGen:GF:=1$GF
-- controls the imbedding of the ground field
logq:List SI:=[0,10::SI,16::SI,20::SI,23::SI,0,28::SI,_
30::SI,32::SI,0,35::SI]
-- logq.i is about 10*log2(i) for the values <12 which
-- can match sizeGF. It's used by "**"
expTable:L L SI:=[[],_
[4::SI,12::SI,48::SI,160::SI,480::SI,0],_
[8::SI,72::SI,432::SI,0],_
[18::SI,216::SI,0],_
[32::SI,480::SI,0],[],_
[72::SI,0],[98::SI,0],[128::SI,0],[],[200::SI,0]]
-- expT is used by "**" to optimize the parameter k
-- before calling dAndcExp(..,..,k)
-- functions ===========================================================
-- computes a**(-1) = a**((q**extDeg)-2)
-- see reference of function expPot
inv(a) ==
b:VGF:=qPot(expPot(a,(#a-1)::NNI::SI,1::SI)$$,1)$$
erg:VGF:=inv((a *$$ b).1 *$GF trGen)$GF *$VGF b
-- "**" decides which exponentiation algorithm will be used, in order to
-- get the fastest computation. If dAndcExp is used, it chooses the
-- optimal parameter k for that algorithm.
a ** ex ==
e:NNI:=positiveRemainder(ex,sizeGF**((#a)::PI)-1)$I :: NNI
zero?(e)$NNI => new(#a,trGen)$VGF
one?(e)$NNI => copy(a)$VGF
-- inGroundField?(a) => new(#a,((a.1*trGen) **$GF e))$VGF
e1:SI:=(length(e)$I)::SI
sizeGF >$I 11 =>
q1:SI:=(length(sizeGF)$I)::SI
logqe:SI:=(e1 quo$SI q1) +$SI 1$SI
10::SI * (logqe + sizeGF-2) > 15::SI * e1 =>
-- print("repeatedSquaring"::OUT)
repSq(a,e)
-- print("divAndConquer(a,e,1)"::OUT)
dAndcExp(a,e,1)
logqe:SI:=((10::SI *$SI e1) quo$SI (logq.sizeGF)) +$SI 1$SI
k:SI:=1$SI
expT:List SI:=expTable.sizeGF
while (logqe >= expT.k) and not zero? expT.k repeat k:=k +$SI 1$SI
mult:I:=(sizeGF-1) *$I sizeGF **$I ((k-1)pretend NNI) +$I_
((logqe +$SI k -$SI 1$SI) quo$SI k)::I -$I 2
(10*mult) >= (15 * (e1::I)) =>
-- print("repeatedSquaring(a,e)"::OUT)
repSq(a,e)
-- print(hconcat(["divAndConquer(a,e,"::OUT,k::OUT,")"::OUT])$OUT)
dAndcExp(a,e,k)
-- computes a**e by repeated squaring
repSq(b,e) ==
a:=copy(b)$VGF
one? e => a
odd?(e)$I => a * repSq(a*a,(e quo 2) pretend NNI)
repSq(a*a,(e quo 2) pretend NNI)
-- computes a**e using the divide and conquer algorithm similar to the
-- one from D.R.Stinson,
-- "Some observations on parallel Algorithms for fast exponentiation in
-- GF(2^n)", Siam J. Computation, Vol.19, No.4, pp.711-717, August 1990
dAndcExp(a,e,k) ==
plist:List VGF:=[copy(a)$VGF]
qk:I:=sizeGF**(k pretend NNI)
for j in 2..(qk-1) repeat
if positiveRemainder(j,sizeGF)=0 then b:=qPot(plist.(j quo sizeGF),1)$$
else b:=a *$$ last(plist)$(List VGF)
plist:=concat(plist,b)
l:List NNI:=nil()
ex:I:=e
while not(ex = 0) repeat
l:=concat(l,positiveRemainder(ex,qk) pretend NNI)
ex:=ex quo qk
if first(l)=0 then erg:VGF:=new(#a,trGen)$VGF
else erg:VGF:=plist.(first(l))
i:SI:=k
for j in rest(l) repeat
if j~=0 then erg:=erg *$$ qPot(plist.j,i)$$
i:=i+k
erg
a * b ==
e:SI:=(#a)::SI
erg:=zero(#a)$VGF
for t in multTable.1 repeat
for j in 1..e repeat
y:=t.value -- didn't work without defining x and y
x:=t.index
k:SI:=addmod(x,j::SI,e)$SI +$SI 1$SI
erg.k:=erg.k +$GF a.j *$GF b.j *$GF y
for i in 1..e-1 repeat
for j in i+1..e repeat
for t in multTable.(j-i+1) repeat
y:=t.value -- didn't work without defining x and y
x:=t.index
k:SI:=addmod(x,i::SI,e)$SI +$SI 1$SI
erg.k:GF:=erg.k +$GF (a.i *$GF b.j +$GF a.j *$GF b.i) *$GF y
erg
lookup(x) ==
erg:I:=0
for j in (#x)..1 by -1 repeat
erg:=(erg * sizeGF) + (lookup(x.j)$GF rem sizeGF)
erg=0 => (sizeGF**(#x)) :: PI
erg :: PI
-- computes the norm of a over GF**d, d must devide extdeg
-- see reference of function expPot below
norm(a,d) ==
dSI:=d::SI
r:=divide((#a)::SI,dSI)
not(r.remainder = 0) => error "norm: 2.arg must divide extdeg"
expPot(a,r.quotient,dSI)$$
-- computes expPot(a,e,d) = sum form i=0 to e-1 over a**(q**id))
-- see T.Itoh and S.Tsujii,
-- "A fast algorithm for computing multiplicative inverses in GF(2^m)
-- using normal bases",
-- Information and Computation 78, pp.171-177, 1988
expPot(a,e,d) ==
deg:SI:=(#a)::SI
e=1 => copy(a)$VGF
k2:SI:=d
y:=copy(a)
if bit?(e,0) then
erg:=copy(y)
qpot:SI:=k2
else
erg:=new(#a,inv(trGen)$GF)$VGF
qpot:SI:=0
for k in 1..length(e) repeat
y:= y *$$ qPot(y,k2)
k2:=addmod(k2,k2,deg)$SI
if bit?(e,k) then
erg:=erg *$$ qPot(y,qpot)
qpot:=addmod(qpot,k2,deg)$SI
erg
-- computes qPot(a,n) = a**(q**n), q=size of GF
qPot(e,n) ==
ei:=(#e)::SI
m:SI:= positiveRemainder(n::SI,ei)$SI
zero?(m) => e
e1:=zero(#e)$VGF
for i in m+1..ei repeat e1.i:=e.(i-m)
for i in 1..m repeat e1.i:=e.(ei+i-m)
e1
trace(a,d) ==
dSI:=d::SI
r:=divide((#a)::SI,dSI)$SI
not(r.remainder = 0) => error "trace: 2.arg must divide extdeg"
v:=copy(a.(1..dSI))$VGF
sSI:SI:=r.quotient
for i in 1..dSI repeat
for j in 1..sSI-1 repeat
v.i:=v.i+a.(i+j::SI*dSI)
v
random(n) ==
v:=zero(n)$VGF
for i in 1..n repeat v.i:=random()$GF
v
xn(m) == monomial(1,m)$(SUP GF) - 1$(SUP GF)
normal?(x) ==
gcd(xn(#x),pol(x))$(SUP GF) = 1 => true
false
x:VGF / y:VGF == x *$$ inv(y)$$
setFieldInfo(m,n) ==
multTable:=m
trGen:=n
void()$Void
minimalPolynomial(x) ==
dx:=#x
y:=new(#x,inv(trGen)$GF)$VGF
m:=zero(dx,dx+1)$(M GF)
for i in 1..dx+1 repeat
dy:=#y
for j in 1..dy repeat
for k in 0..((dx quo dy)-1) repeat
qsetelt!(m,j+k*dy,i,y.j)$(M GF)
y:=y *$$ x
v:=first nullSpace(m)$(M GF)
pol(v)$$
basis(n) ==
bas:(V VGF):=new(n,zero(n)$VGF)$(V VGF)
for i in 1..n repeat
uniti:=zero(n)$VGF
qsetelt!(uniti,i,1$GF)$VGF
qsetelt!(bas,i,uniti)$(V VGF)
bas
normalElement(n) ==
v:=zero(n)$VGF
qsetelt!(v,1,1$GF)
v
-- normalElement(n) == index(n,1)$$
index(degm,n) ==
m:I:=n rem$I (sizeGF ** degm)
erg:=zero(degm)$VGF
for j in 1..degm repeat
erg.j:=index((sizeGF+(m rem sizeGF)) pretend PI)$GF
m:=m quo sizeGF
erg
pol(x) ==
+/[monomial(x.i,(i-1)::NNI)$(SUP GF) for i in 1..(#x)::I]
@
\section{domain FFNBP FiniteFieldNormalBasisExtensionByPolynomial}
<<domain FFNBP FiniteFieldNormalBasisExtensionByPolynomial>>=
import NonNegativeInteger
import Matrix
)abbrev domain FFNBP FiniteFieldNormalBasisExtensionByPolynomial
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ Date Last Updated: 08 May 1991
++ Basic Operations:
++ Related Constructors: InnerNormalBasisFieldFunctions, FiniteFieldFunctions,
++ Also See: FiniteFieldExtensionByPolynomial,
++ FiniteFieldCyclicGroupExtensionByPolynomial
++ AMS Classifications:
++ Keywords: finite field, normal basis
++ References:
++ R.Lidl, H.Niederreiter: Finite Field, Encyclopedia of Mathematics and
++ Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM .
++ AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++ FiniteFieldNormalBasisExtensionByPolynomial(GF,uni) implements a
++ finite extension of the ground field {\em GF}. The elements are
++ represented by coordinate vectors with respect to. a normal basis,
++ i.e. a basis
++ consisting of the conjugates (q-powers) of an element, in this case
++ called normal element, where q is the size of {\em GF}.
++ The normal element is chosen as a root of the extension
++ polynomial, which MUST be normal over {\em GF} (user responsibility)
FiniteFieldNormalBasisExtensionByPolynomial(GF,uni): Exports == _
Implementation where
GF : FiniteFieldCategory -- the ground field
uni : Union(SparseUnivariatePolynomial GF,_
Vector List Record(value:GF,index:SingleInteger))
PI ==> PositiveInteger
NNI ==> NonNegativeInteger
I ==> Integer
SI ==> SingleInteger
SUP ==> SparseUnivariatePolynomial
V ==> Vector GF
M ==> Matrix GF
OUT ==> OutputForm
TERM ==> Record(value:GF,index:SI)
R ==> Record(key:PI,entry:NNI)
TBL ==> Table(PI,NNI)
FFF ==> FiniteFieldFunctions(GF)
INBFF ==> InnerNormalBasisFieldFunctions(GF)
Exports ==> FiniteAlgebraicExtensionField(GF) with
getMultiplicationTable: () -> Vector List TERM
++ getMultiplicationTable() returns the multiplication
++ table for the normal basis of the field.
++ This table is used to perform multiplications between field elements.
getMultiplicationMatrix:() -> M
++ getMultiplicationMatrix() returns the multiplication table in
++ form of a matrix.
sizeMultiplication:() -> NNI
++ sizeMultiplication() returns the number of entries in the
++ multiplication table of the field.
++ Note: the time of multiplication
++ of field elements depends on this size.
Implementation ==> add
-- global variables ===================================================
Rep:= V -- elements are represented by vectors over GF
alpha :=new()$Symbol :: OutputForm
-- get a new Symbol for the output representation of the elements
initlog?:Boolean:=true
-- gets false after initialization of the logarithm table
initelt?:Boolean:=true
-- gets false after initialization of the primitive element
initmult?:Boolean:=true
-- gets false after initialization of the multiplication
-- table or the primitive element
extdeg:PI :=1
defpol:SUP(GF):=0$SUP(GF)
-- the defining polynomial
multTable:Vector List TERM:=new(1,nil()$(List TERM))
-- global variable containing the multiplication table
if uni case (Vector List TERM) then
multTable:=uni :: (Vector List TERM)
extdeg:= (#multTable) pretend PI
vv:V:=new(extdeg,0)$V
vv.1:=1$GF
setFieldInfo(multTable,1$GF)$INBFF
defpol:=minimalPolynomial(vv)$INBFF
initmult?:=false
else
defpol:=uni :: SUP(GF)
extdeg:=degree(defpol)$(SUP GF) pretend PI
multTable:Vector List TERM:=new(extdeg,nil()$(List TERM))
basisOutput : List OUT :=
qs:OUT:=(q::Symbol)::OUT
append([alpha, alpha **$OUT qs],_
[alpha **$OUT (qs **$OUT i::OUT) for i in 2..extdeg-1] )
facOfGroupSize :=nil()$(List Record(factor:Integer,exponent:Integer))
-- the factorization of the cyclic group size
traceAlpha:GF:=-$GF coefficient(defpol,(degree(defpol)-1)::NNI)
-- the inverse of the trace of the normalElt
-- is computed here. It defines the imbedding of
-- GF in the extension field
primitiveElt:PI:=1
-- for the lookup the primitive Element computed by createPrimitiveElement()
discLogTable:Table(PI,TBL):=table()$Table(PI,TBL)
-- tables indexed by the factors of sizeCG,
-- discLogTable(factor) is a table with keys
-- primitiveElement() ** (i * (sizeCG quo factor)) and entries i for
-- i in 0..n-1, n computed in initialize() in order to use
-- the minimal size limit 'limit' optimal.
-- functions ===========================================================
initializeLog: () -> Void
initializeElt: () -> Void
initializeMult: () -> Void
coerce(v:GF):$ == new(extdeg,v /$GF traceAlpha)$Rep
represents(v) == v::$
degree(a: %): PositiveInteger ==
d:PI:=1
b:= qPot(a::Rep,1)$INBFF
while (b~=a) repeat
b:= qPot(b::Rep,1)$INBFF
d:=d+1
d
linearAssociatedExp(x,f) ==
xm:SUP(GF):=monomial(1$GF,extdeg)$(SUP GF) - 1$(SUP GF)
r:= (f * pol(x::Rep)$INBFF) rem xm
vectorise(r,extdeg)$(SUP GF)
linearAssociatedLog(x) == pol(x::Rep)$INBFF
linearAssociatedOrder(x) ==
xm:SUP(GF):=monomial(1$GF,extdeg)$(SUP GF) - 1$(SUP GF)
xm quo gcd(xm,pol(x::Rep)$INBFF)
linearAssociatedLog(b,x) ==
zero? x => 0
xm:SUP(GF):=monomial(1$GF,extdeg)$(SUP GF) - 1$(SUP GF)
e:= extendedEuclidean(pol(b::Rep)$INBFF,xm,pol(x::Rep)$INBFF)$(SUP GF)
e = "failed" => "failed"
e1:= e :: Record(coef1:(SUP GF),coef2:(SUP GF))
e1.coef1
getMultiplicationTable() ==
if initmult? then initializeMult()
multTable
getMultiplicationMatrix() ==
if initmult? then initializeMult()
createMultiplicationMatrix(multTable)$FFF
sizeMultiplication() ==
if initmult? then initializeMult()
sizeMultiplication(multTable)$FFF
trace(a:$) == retract trace(a,1)
norm(a:$) == retract norm(a,1)
generator() == normalElement(extdeg)$INBFF
basis(n:PI) ==
(extdeg rem n) ~= 0 => error "argument must divide extension degree"
[Frobenius(trace(normalElement,n),i) for i in 0..(n-1)]::(Vector $)
a:GF * x:$ == a *$Rep x
x:$/a:GF == x/coerce(a)
-- x:$ / a:GF ==
-- a = 0$GF => error "division by zero"
-- x * inv(coerce(a))
coordinates(x:$) == x::Rep
Frobenius(e) == qPot(e::Rep,1)$INBFF
Frobenius(e,n) == qPot(e::Rep,n)$INBFF
retractIfCan(x) ==
inGroundField?(x) =>
x.1 *$GF traceAlpha
"failed"
retract(x) ==
inGroundField?(x) =>
x.1 *$GF traceAlpha
error("element not in ground field")
-- to get a "normal basis like" output form
coerce(x:$):OUT ==
l:List OUT:=nil()$(List OUT)
n : PI := extdeg
one? n => (x.1) :: OUT
for i in 1..n for b in basisOutput repeat
if not zero? x.i then
mon : OUT :=
one? x.i => b
((x.i)::OUT) *$OUT b
l:=cons(mon,l)$(List OUT)
null(l)$(List OUT) => (0::OUT)
r:=reduce("+",l)$(List OUT)
r
initializeElt() ==
facOfGroupSize := factors factor(size()$GF**extdeg-1)$I
-- get a primitive element
primitiveElt:=lookup(createPrimitiveElement())
initelt?:=false
void()$Void
initializeMult() ==
multTable:=createMultiplicationTable(defpol)$FFF
setFieldInfo(multTable,traceAlpha)$INBFF
-- reset initialize flag
initmult?:=false
void()$Void
initializeLog() ==
if initelt? then initializeElt()
-- set up tables for discrete logarithm
limit:Integer:=30
-- the minimum size for the discrete logarithm table
for f in facOfGroupSize repeat
fac:=f.factor
base:$:=index(primitiveElt)**((size()$GF**extdeg -$I 1$I) quo$I fac)
l:Integer:=length(fac)$Integer
n:Integer:=0
if odd?(l)$I then n:=shift(fac,-$I (l quo$I 2))$I
else n:=shift(1,l quo$I 2)$I
if n <$I limit then
d:=(fac -$I 1$I) quo$I limit +$I 1$I
n:=(fac -$I 1$I) quo$I d +$I 1$I
tbl:TBL:=table()$TBL
a:$:=1
for i in (0::NNI)..(n-1)::NNI repeat
insert!([lookup(a),i::NNI]$R,tbl)$TBL
a:=a*base
insert!([fac::PI,copy(tbl)$TBL]_
$Record(key:PI,entry:TBL),discLogTable)$Table(PI,TBL)
initlog?:=false
-- tell user about initialization
--print("discrete logarithm table initialized"::OUT)
void()$Void
tableForDiscreteLogarithm(fac) ==
if initlog? then initializeLog()
tbl:=search(fac::PI,discLogTable)$Table(PI,TBL)
tbl case "failed" =>
error "tableForDiscreteLogarithm: argument must be prime _
divisor of the order of the multiplicative group"
tbl :: TBL
primitiveElement() ==
if initelt? then initializeElt()
index(primitiveElt)
factorsOfCyclicGroupSize() ==
if empty? facOfGroupSize then initializeElt()
facOfGroupSize
extensionDegree(): PositiveInteger == extdeg
sizeOfGroundField() == size()$GF pretend NNI
definingPolynomial() == defpol
trace(a,d) ==
v:=trace(a::Rep,d)$INBFF
erg:=v
for i in 2..(extdeg quo d) repeat
erg:=concat(erg,v)$Rep
erg
characteristic == characteristic$GF
random() == random(extdeg)$INBFF
x:$ * y:$ ==
if initmult? then initializeMult()
setFieldInfo(multTable,traceAlpha)$INBFF
x::Rep *$INBFF y::Rep
1 == new(extdeg,inv(traceAlpha)$GF)$Rep
0 == zero(extdeg)$Rep
size() == size()$GF ** extdeg
index(n:PI) == index(extdeg,n)$INBFF
lookup(x:$) == lookup(x::Rep)$INBFF
basis() ==
a:=basis(extdeg)$INBFF
vector([e::$ for e in entries a])
x:$ ** e:I ==
if initmult? then initializeMult()
setFieldInfo(multTable,traceAlpha)$INBFF
(x::Rep) **$INBFF e
normal?(x) == normal?(x::Rep)$INBFF
-(x:$) == -$Rep x
x:$ + y:$ == x +$Rep y
x:$ - y:$ == x -$Rep y
x:$ = y:$ == x =$Rep y
n:I * x:$ == x *$Rep (n::GF)
representationType() == "normal"
minimalPolynomial(a) ==
if initmult? then initializeMult()
setFieldInfo(multTable,traceAlpha)$INBFF
minimalPolynomial(a::Rep)$INBFF
-- is x an element of the ground field GF ?
inGroundField?(x) ==
erg:=true
for i in 2..extdeg repeat
not(x.i =$GF x.1) => erg:=false
erg
x:$ / y:$ ==
if initmult? then initializeMult()
setFieldInfo(multTable,traceAlpha)$INBFF
x::Rep /$INBFF y::Rep
inv(a) ==
if initmult? then initializeMult()
setFieldInfo(multTable,traceAlpha)$INBFF
inv(a::Rep)$INBFF
norm(a,d) ==
if initmult? then initializeMult()
setFieldInfo(multTable,traceAlpha)$INBFF
norm(a::Rep,d)$INBFF
normalElement() == normalElement(extdeg)$INBFF
@
\section{domain FFNBX FiniteFieldNormalBasisExtension}
<<domain FFNBX FiniteFieldNormalBasisExtension>>=
)abbrev domain FFNBX FiniteFieldNormalBasisExtension
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ Date Last Updated:
++ Basic Operations:
++ Related Constructors: FiniteFieldNormalBasisExtensionByPolynomial,
++ FiniteFieldPolynomialPackage
++ Also See: FiniteFieldExtension, FiniteFieldCyclicGroupExtension
++ AMS Classifications:
++ Keywords: finite field, normal basis
++ References:
++ R.Lidl, H.Niederreiter: Finite Field, Encyclopedia of Mathematics and
++ Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++ AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++ FiniteFieldNormalBasisExtensionByPolynomial(GF,n) implements a
++ finite extension field of degree n over the ground field {\em GF}.
++ The elements are represented by coordinate vectors with respect
++ to a normal basis,
++ i.e. a basis consisting of the conjugates (q-powers) of an element, in
++ this case called normal element. This is chosen as a root of the extension
++ polynomial, created by {\em createNormalPoly} from
++ \spadtype{FiniteFieldPolynomialPackage}
FiniteFieldNormalBasisExtension(GF,extdeg):_
Exports == Implementation where
GF : FiniteFieldCategory -- the ground field
extdeg: PositiveInteger -- the extension degree
NNI ==> NonNegativeInteger
FFF ==> FiniteFieldFunctions(GF)
TERM ==> Record(value:GF,index:SingleInteger)
Exports ==> FiniteAlgebraicExtensionField(GF) with
getMultiplicationTable: () -> Vector List TERM
++ getMultiplicationTable() returns the multiplication
++ table for the normal basis of the field.
++ This table is used to perform multiplications between field elements.
getMultiplicationMatrix: () -> Matrix GF
++ getMultiplicationMatrix() returns the multiplication table in
++ form of a matrix.
sizeMultiplication:() -> NNI
++ sizeMultiplication() returns the number of entries in the
++ multiplication table of the field. Note: the time of multiplication
++ of field elements depends on this size.
Implementation ==> FiniteFieldNormalBasisExtensionByPolynomial(GF,_
createLowComplexityNormalBasis(extdeg)$FFF)
@
\section{domain FFNB FiniteFieldNormalBasis}
<<domain FFNB FiniteFieldNormalBasis>>=
)abbrev domain FFNB FiniteFieldNormalBasis
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ Date Last Updated:
++ Basic Operations:
++ Related Constructors: FiniteFieldNormalBasisExtensionByPolynomial,
++ FiniteFieldPolynomialPackage
++ Also See: FiniteField, FiniteFieldCyclicGroup
++ AMS Classifications:
++ Keywords: finite field, normal basis
++ References:
++ R.Lidl, H.Niederreiter: Finite Field, Encyclopedia of Mathematics and
++ Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++ AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++ FiniteFieldNormalBasis(p,n) implements a
++ finite extension field of degree n over the prime field with p elements.
++ The elements are represented by coordinate vectors with respect to
++ a normal basis,
++ i.e. a basis consisting of the conjugates (q-powers) of an element, in
++ this case called normal element.
++ This is chosen as a root of the extension polynomial
++ created by \spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.
FiniteFieldNormalBasis(p,extdeg):_
Exports == Implementation where
p : PositiveInteger
extdeg: PositiveInteger -- the extension degree
NNI ==> NonNegativeInteger
FFF ==> FiniteFieldFunctions(PrimeField(p))
TERM ==> Record(value:PrimeField(p),index:SingleInteger)
Exports ==> FiniteAlgebraicExtensionField(PrimeField(p)) with
getMultiplicationTable: () -> Vector List TERM
++ getMultiplicationTable() returns the multiplication
++ table for the normal basis of the field.
++ This table is used to perform multiplications between field elements.
getMultiplicationMatrix: () -> Matrix PrimeField(p)
++ getMultiplicationMatrix() returns the multiplication table in
++ form of a matrix.
sizeMultiplication:() -> NNI
++ sizeMultiplication() returns the number of entries in the
++ multiplication table of the field. Note: The time of multiplication
++ of field elements depends on this size.
Implementation ==> FiniteFieldNormalBasisExtensionByPolynomial(PrimeField(p),_
createLowComplexityNormalBasis(extdeg)$FFF)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package INBFF InnerNormalBasisFieldFunctions>>
<<domain FFNBP FiniteFieldNormalBasisExtensionByPolynomial>>
<<domain FFNBX FiniteFieldNormalBasisExtension>>
<<domain FFNB FiniteFieldNormalBasis>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|