1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
\documentclass{article}
\usepackage{axiom}
\author{Gabriel Dos~Reis}
\begin{document}
\begin{abstract}
\end{abstract}
\tableofcontents
\eject
\section{The Byte domain}
<<domain BYTE Byte>>=
import NonNegativeInteger
import OutputForm
)abbrev domain BYTE Byte
++ Author: Gabriel Dos Reis
++ Date Created: April 19, 2008
++ Date Last Updated: October 5, 2008
++ Basic Operations: byte, bitand, bitor, bitxor
++ Related Constructor: NonNegativeInteger
++ Description:
++ Byte is the datatype of 8-bit sized unsigned integer values.
Byte(): Public == Private where
Public == Join(OrderedSet, CoercibleTo NonNegativeInteger,
CoercibleTo Character) with
byte: NonNegativeInteger -> %
++ byte(x) injects the unsigned integer value `v' into
++ the Byte algebra. `v' must be non-negative and less than 256.
coerce: NonNegativeInteger -> %
++ coerce(x) has the same effect as byte(x).
coerce: Character -> %
++ coerce(c) views `c' a a byte. In particular `c' is supposed
++ to have a numerical value less than 256.
bitand: (%,%) -> %
++ bitand(x,y) returns the bitwise `and' of `x' and `y'.
bitior: (%,%) -> %
++ bitor(x,y) returns the bitwise `inclusive or' of `x' and `y'.
sample: () -> %
++ sample() returns a sample datum of type Byte.
Private == add
byte(x: NonNegativeInteger): % ==
not (x < 256$Lisp) =>
userError "integer value cannot be represented by a byte"
x : %
sample() = 0$Lisp
hash x == SXHASH(x)$Lisp
coerce(x: NonNegativeInteger): % == byte x
coerce(x: %): NonNegativeInteger == x : NonNegativeInteger
coerce(c: Character) == ord(c)::%
coerce(x: %): Character == char(x::NonNegativeInteger)
coerce(x: %): OutputForm ==
x::NonNegativeInteger::OutputForm
x = y == byteEqual(x,y)$Lisp
x < y == byteLessThan(x,y)$Lisp
bitand(x,y) == bitand(x,y)$Lisp
bitior(x,y) == bitior(x,y)$Lisp
@
\section{The ByteBuffer domain}
<<domain BYTEBUF ByteBuffer>>=
import Byte
)abbrev domain BYTEBUF ByteBuffer
++ Author: Gabriel Dos Reis
++ Date Created: April 19, 2008
++ Related Constructor:
++ Description:
++ ByteBuffer provides datatype for buffers of bytes. This domain
++ differs from PrimitiveArray Byte in that it has it is not as rigid
++ as PrimitiveArray Byte is. That is, the typical use of
++ ByteBuffer is to pre-allocate a vector of Byte of some capacity
++ `c'. The array can then store up to `c' bytes. The actual
++ interesting bytes count (the length of the buffer) is therefore
++ different from the capacity. The length is no more than the
++ capacity, but it can be set dynamically as needed. This
++ functionality is used for example when reading bytes from
++ input/output devices where we use buffers to transfer data in and
++ out of the system.
++ Note: a value of type ByteBuffer is 0-based indexed, as opposed
++ Vector, but not unlike PrimitiveArray Byte.
ByteBuffer(): Public == Private where
Public == Join(OneDimensionalArrayAggregate Byte, CoercibleTo String) with
byteBuffer: NonNegativeInteger -> %
++ byteBuffer(n) creates a buffer of capacity n, and length 0.
_#: % -> NonNegativeInteger
++ #buf returns the number of active elements in the buffer.
capacity: % -> NonNegativeInteger
++ capacity(buf) returns the pre-allocated maximum size of `buf'.
setLength!: (%,NonNegativeInteger) -> NonNegativeInteger
++ setLength!(buf,n) sets the number of active bytes in the
++ `buf'. Error if `n' is more than the capacity.
Private == add
byteBuffer n ==
buf := makeByteBuffer(n)$Lisp
setLength!(buf,0)
buf
empty() == byteBuffer 0
new(n,b) == makeByteBuffer(n,b)$Lisp
qelt(buf,i) ==
AREF(buf,i)$Lisp
elt(buf: %,i: Integer) ==
i >= capacity buf => error "index out of range"
qelt(buf,i)
qsetelt!(buf,i,b) ==
SETF(AREF(buf,i)$Lisp,b)$Lisp
setelt(buf: %,i: Integer, b: Byte) ==
i >= capacity buf => error "index out of range"
qsetelt!(buf,i,b)
capacity buf == ARRAY_-DIMENSION(buf,0)$Lisp
minIndex buf == 0
maxIndex buf == capacity(buf)::Integer - 1
# buf == LENGTH(buf)$Lisp
x = y ==
EQUAL(x,y)$Lisp
setLength!(buf,n) ==
n > capacity buf =>
error "attempt to set length higher than capacity"
SETF(FILL_-POINTER(buf)$Lisp,n)$Lisp
coerce(buf: %): String ==
s: String := MAKE_-STRING(#buf)$Lisp
for i in 0..(#buf - 1) repeat
qsetelt!(s,i + 1,qelt(buf,i)::Character)$String
s
construct l ==
buf := byteBuffer(#l)
for b in l for i in 0.. repeat
buf.i := b
buf
concat(x: %, y:%) ==
nx := #x
ny := #y
buf := byteBuffer(nx + ny)
for i in 0..(nx - 1) repeat
buf.i := x.i
for i in 0..(ny - 1) repeat
buf.(nx + i) := y.i
buf
@
\section{The DataArray domain}
<<domain DATAARY DataArray>>=
)abbrev domain DATAARY DataArray
++ Author: Gabriel Dos Reis
++ Date Created: August 23, 2008
++ Description:
++ This domain provides for a fixed-sized homogeneous data buffer.
DataArray(N: PositiveInteger, T: SetCategory): Public == Private where
Public == SetCategory with
new: () -> %
++ new() returns a fresly allocated data buffer or length N.
qelt: (%,NonNegativeInteger) -> T
++ elt(b,i) returns the ith element in buffer `b'. Indexing
++ is 0-based.
qsetelt: (%,NonNegativeInteger,T) -> T
++ setelt(b,i,x) sets the ith entry of data buffer `b' to `x'.
++ Indexing is 0-based.
Private == add
new() ==
makeSimpleArray(getVMType(T)$Lisp,N)$Lisp
qelt(b,i) ==
getSimpleArrayEntry(b,i)$Lisp
qsetelt(b,i,x) ==
setSimpleArrayEntry(b,i,x)$Lisp
x = y ==
EQUAL(x,y)$Lisp
coerce(b: %): OutputForm ==
bracket([qelt(b,i)::OutputForm for i in 0..(N-1)])
@
\section{License}
<<license>>=
--Copyright (C) 2007-2008, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical Algorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain BYTE Byte>>
<<domain BYTEBUF ByteBuffer>>
<<domain DATAARY DataArray>>
@
\end{document}
|