1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra constant.spad}
\author{Manuel Bronstein, James Davenport}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain IAN InnerAlgebraicNumber}
<<domain IAN InnerAlgebraicNumber>>=
)abbrev domain IAN InnerAlgebraicNumber
++ Algebraic closure of the rational numbers
++ Author: Manuel Bronstein
++ Date Created: 22 March 1988
++ Date Last Updated: 4 October 1995 (JHD)
++ Description: Algebraic closure of the rational numbers.
++ Keywords: algebraic, number.
InnerAlgebraicNumber(): Exports == Implementation where
Z ==> Integer
FE ==> Expression Z
K ==> Kernel %
P ==> SparseMultivariatePolynomial(Z, K)
SUP ==> SparseUnivariatePolynomial
Exports ==> Join(ExpressionSpace, AlgebraicallyClosedField,
RetractableTo Z, RetractableTo Fraction Z,
LinearlyExplicitRingOver Z, RealConstant,
LinearlyExplicitRingOver Fraction Z,
CharacteristicZero,
ConvertibleTo Complex Float, DifferentialRing) with
coerce : P -> %
++ coerce(p) returns p viewed as an algebraic number.
numer : % -> P
++ numer(f) returns the numerator of f viewed as a
++ polynomial in the kernels over Z.
denom : % -> P
++ denom(f) returns the denominator of f viewed as a
++ polynomial in the kernels over Z.
reduce : % -> %
++ reduce(f) simplifies all the unreduced algebraic numbers
++ present in f by applying their defining relations.
trueEqual : (%,%) -> Boolean
++ trueEqual(x,y) tries to determine if the two numbers are equal
norm : (SUP(%),Kernel %) -> SUP(%)
++ norm(p,k) computes the norm of the polynomial p
++ with respect to the extension generated by kernel k
norm : (SUP(%),List Kernel %) -> SUP(%)
++ norm(p,l) computes the norm of the polynomial p
++ with respect to the extension generated by kernels l
norm : (%,Kernel %) -> %
++ norm(f,k) computes the norm of the algebraic number f
++ with respect to the extension generated by kernel k
norm : (%,List Kernel %) -> %
++ norm(f,l) computes the norm of the algebraic number f
++ with respect to the extension generated by kernels l
Implementation ==> FE add
macro ALGOP == '%alg
Rep := FE
-- private
mainRatDenom(f:%):% ==
ratDenom(f::Rep::FE)$AlgebraicManipulations(Integer, FE)::Rep::%
-- mv:= mainVariable denom f
-- mv case "failed" => f
-- algv:=mv::K
-- q:=univariate(f, algv, minPoly(algv))$PolynomialCategoryQuotientFunctions(IndexedExponents K,K,Integer,P,%)
-- q(algv::%)
findDenominator(z:SUP %):Record(num:SUP %,den:%) ==
zz:=z
while not(zz=0) repeat
dd:=(denom leadingCoefficient zz)::%
not(dd=1) =>
rec:=findDenominator(dd*z)
return [rec.num,rec.den*dd]
zz:=reductum zz
[z,1]
makeUnivariate(p:P,k:Kernel %):SUP % ==
map(#1::%,univariate(p,k))$SparseUnivariatePolynomialFunctions2(P,%)
-- public
a,b:%
differentiate(x:%):% == 0
zero? a == zero? numer a
one? a == one? numer a and one? denom a
x:% / y:% == mainRatDenom(x /$Rep y)
x:% ** n:Integer ==
n < 0 => mainRatDenom (x **$Rep n)
x **$Rep n
trueEqual(a,b) ==
-- if two algebraic numbers have the same norm (after deleting repeated
-- roots, then they are certainly conjugates. Note that we start with a
-- monic polynomial, so don't have to check for constant factors.
-- this will be fooled by sqrt(2) and -sqrt(2), but the = in
-- AlgebraicNumber knows what to do about this.
ka:=reverse tower a
kb:=reverse tower b
empty? ka and empty? kb => retract(a)@Fraction Z = retract(b)@Fraction Z
pa,pb:SparseUnivariatePolynomial %
pa:=monomial(1,1)-monomial(a,0)
pb:=monomial(1,1)-monomial(b,0)
na:=map(retract,norm(pa,ka))$SparseUnivariatePolynomialFunctions2(%,Fraction Z)
nb:=map(retract,norm(pb,kb))$SparseUnivariatePolynomialFunctions2(%,Fraction Z)
(sa:=squareFreePart(na)) = (sb:=squareFreePart(nb)) => true
g:=gcd(sa,sb)
(dg:=degree g) = 0 => false
-- of course, if these have a factor in common, then the
-- answer is really ambiguous, so we ought to be using Duval-type
-- technology
dg = degree sa or dg = degree sb => true
false
norm(z:%,k:Kernel %): % ==
p:=minPoly k
n:=makeUnivariate(numer z,k)
d:=makeUnivariate(denom z,k)
resultant(n,p)/resultant(d,p)
norm(z:%,l:List Kernel %): % ==
for k in l repeat
z:=norm(z,k)
z
norm(z:SUP %,k:Kernel %):SUP % ==
p:=map(#1::SUP %,minPoly k)$SparseUnivariatePolynomialFunctions2(%,SUP %)
f:=findDenominator z
zz:=map(makeUnivariate(numer #1,k),f.num)$SparseUnivariatePolynomialFunctions2( %,SUP %)
zz:=swap(zz)$CommuteUnivariatePolynomialCategory(%,SUP %,SUP SUP %)
resultant(p,zz)/norm(f.den,k)
norm(z:SUP %,l:List Kernel %): SUP % ==
for k in l repeat
z:=norm(z,k)
z
belong? op == belong?(op)$ExpressionSpace_&(%) or has?(op, ALGOP)
convert(x:%):Float ==
retract map(#1::Float, x pretend FE)$ExpressionFunctions2(Z,Float)
convert(x:%):DoubleFloat ==
retract map(#1::DoubleFloat,
x pretend FE)$ExpressionFunctions2(Z, DoubleFloat)
convert(x:%):Complex(Float) ==
retract map(#1::Complex(Float),
x pretend FE)$ExpressionFunctions2(Z, Complex Float)
@
\section{domain AN AlgebraicNumber}
<<domain AN AlgebraicNumber>>=
)abbrev domain AN AlgebraicNumber
++ Algebraic closure of the rational numbers
++ Author: James Davenport
++ Date Created: 9 October 1995
++ Date Last Updated: 10 October 1995 (JHD)
++ Description: Algebraic closure of the rational numbers, with mathematical =
++ Keywords: algebraic, number.
AlgebraicNumber(): Exports == Implementation where
Z ==> Integer
P ==> SparseMultivariatePolynomial(Z, Kernel %)
SUP ==> SparseUnivariatePolynomial
Exports ==> Join(ExpressionSpace, AlgebraicallyClosedField,
RetractableTo Z, RetractableTo Fraction Z,
LinearlyExplicitRingOver Z, RealConstant,
LinearlyExplicitRingOver Fraction Z,
CharacteristicZero,
ConvertibleTo Complex Float, DifferentialRing) with
coerce : P -> %
++ coerce(p) returns p viewed as an algebraic number.
numer : % -> P
++ numer(f) returns the numerator of f viewed as a
++ polynomial in the kernels over Z.
denom : % -> P
++ denom(f) returns the denominator of f viewed as a
++ polynomial in the kernels over Z.
reduce : % -> %
++ reduce(f) simplifies all the unreduced algebraic numbers
++ present in f by applying their defining relations.
norm : (SUP(%),Kernel %) -> SUP(%)
++ norm(p,k) computes the norm of the polynomial p
++ with respect to the extension generated by kernel k
norm : (SUP(%),List Kernel %) -> SUP(%)
++ norm(p,l) computes the norm of the polynomial p
++ with respect to the extension generated by kernels l
norm : (%,Kernel %) -> %
++ norm(f,k) computes the norm of the algebraic number f
++ with respect to the extension generated by kernel k
norm : (%,List Kernel %) -> %
++ norm(f,l) computes the norm of the algebraic number f
++ with respect to the extension generated by kernels l
Implementation ==> InnerAlgebraicNumber add
Rep:=InnerAlgebraicNumber
a,b:%
zero? a == trueEqual(a::Rep,0::Rep)
one? a == trueEqual(a::Rep,1::Rep)
a=b == trueEqual((a-b)::Rep,0::Rep)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain IAN InnerAlgebraicNumber>>
<<domain AN AlgebraicNumber>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|