aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/catdef.spad.pamphlet
blob: ee556b916c11b9df3100fef73fa4a49f9419f30c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
\documentclass{article}
\usepackage{open-axiom}

\title{\$SPAD/src/algebra catdef.spad}
\author{James Davenport, Lalo Gonzalez-Vega, Gabriel Dos~Reis}

\begin{document}

\maketitle
\begin{abstract}
\end{abstract}
\tableofcontents
\eject

\section{Binary operations}

<<category BINOPC BinaryOperatorCategory>>=
)abbrev category BINOPC BinaryOperatorCategory
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This is the category of all domains that implement binary operations.
BinaryOperatorCategory(T: Type): Category == MappingCategory(T,T,T)

@

<<domain BINOP BinaryOperation>>=
)abbrev domain BINOP BinaryOperation
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This domain implements binary operations.
BinaryOperation(T: Type): Join(BinaryOperatorCategory T, SetCategory) with
    binaryOperation: ((T,T) -> T) -> %
      ++ \spad{binaryOperation f} constructs a binary operation value
      ++ out of any homogeneous mapping of arity 2.
  == (T,T) -> T add
    binaryOperation f == per f
    elt(f,x,y) == rep(f)(x,y)

@

\section{Commutative Operations}

<<category COMOPC CommutativeOperatorCategory>>=
)abbrev category COMOPC CommutativeOperatorCategory
++ Author: Gabriel Dos Reis
++ Date Created: June 17, 2013
++ Date Last Modified: June 17, 2013
++ Description:
++   This is the category of all domains that implement commutative operations.
CommutativeOperatorCategory(T: BasicType): Category ==
  BinaryOperatorCategory T with
    assume commutativity ==
      forall(f: %, x: T, y: T) . f(x,y) = f(y,x)
@

<<domain COMOP CommutativeOperation>>=
)abbrev domain COMOP CommutativeOperation
++ Author: Gabriel Dos Reis
++ Date Created: June 17, 2013
++ Date Last Modified: June 17, 2013
++ Description:
++   This domain implements commutative operations.
CommutativeOperation(T: BasicType): Public == Private where
  Public == Join(CommutativeOperatorCategory T, CoercibleTo BinaryOperation T)
    with
      commutativeOperation: ((T,T) -> T) -> %
        ++ \spad{commutativeOperation f} constructs a commutative operation
        ++ over \spad{T}, thus asserting a commutativity property.
  Private == BinaryOperation T add
    commutativeOperation f == per binaryOperation f
    coerce(x: %): BinaryOperation T == rep x
@


\section{Idempotent operations}

<<category IDEMOPC IdempotentOperatorCategory>>=
)abbrev category IDEMOPC IdempotentOperatorCategory
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This is the category of all domains that implement idempotent operations.
IdempotentOperatorCategory(T: BasicType): Category ==
  BinaryOperatorCategory T with
    assume idempotence ==
      forall(f: %, x: T) . f(x,x) = x
@


\section{Semigroup operations}

<<category SGPOPC SemiGroupOperatorCategory>>=
)abbrev category SGPOPC SemiGroupOperatorCategory
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This is the category of all domains that implement semigroup operations
SemiGroupOperatorCategory(T: BasicType): Category ==
  BinaryOperatorCategory T with
    assume associativity ==
      forall(f: %, x: T, y:T, z: T) . f(f(x,y),z) = f(x,f(y,z))

@

<<domain SGPOP SemiGroupOperation>>=
)abbrev domain SGPOP SemiGroupOperation
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This domain implements semigroup operations.
SemiGroupOperation(T: BasicType): Public == Private where
  Public == Join(SemiGroupOperatorCategory T,SetCategory) with
    semiGroupOperation: ((T,T) -> T) -> %
      ++ \spad{semiGroupOperation f} constructs a semigroup operation
      ++ out of a binary homogeneous mapping known to be associative.
  Private == BinaryOperation T

@


\section{Monoid operations}

<<category MONOPC MonoidOperatorCategory>>=
)abbrev category MONOPC MonoidOperatorCategory
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This is the category of all domains that implement monoid operations
MonoidOperatorCategory(T: BasicType): Category ==
  SemiGroupOperatorCategory T with
    neutralValue: % -> T
      ++ \spad{neutralValue f} returns the neutral value of the
      ++ monoid operation \spad{f}.
    assume neutrality ==
      forall(f: %, x: T) .
         f(x, neutralValue f) = x
         f(neutralValue f, x) = x

@

<<domain MONOP MonoidOperation>>=
)abbrev domain MONOP MonoidOperation
++ Author: Gabriel Dos Reis
++ Date Created: February 24, 2012
++ Date Last Modified: February 24, 2012
++ Description:
++   This domain implements monoid operations.
MonoidOperation(T: BasicType): Public == Private where
  Public == Join(MonoidOperatorCategory T,SetCategory,_
              CoercibleTo SemiGroupOperation T) with
    monoidOperation: ((T,T) -> T, T) -> %
      ++ \spad{monoidOperation(f,e)} constructs a operation from
      ++ the binary mapping \spad{f} with neutral value \spad{e}.
  Private == Pair(SemiGroupOperation T,T) add
    monoidOperation(f,e) == per pair(semiGroupOperation f,e)
    elt(op,x,y) == first(rep op)(x,y)
    neutralValue op == second rep op
    coerce(f: %): SemiGroupOperation T == first rep f

@


\section{Linear sets}

<<category LLINSET LeftLinearSet>>=
)abbrev category LLINSET LeftLinearSet
++ Author: Gabriel Dos Reis
++ Date Created: May 31, 2009
++ Date Last Modified: May 31, 2009
++ Description:
++   A set is an \spad{S}-left linear set if it is stable by left-dilation
++   by elements in the semigroup \spad{S}.  
++ See Also: RightLinearSet.
LeftLinearSet(S: SemiGroup): Category == SetCategory with
   *: (S,%) -> %       
     ++ \spad{s*x} is the left-dilation of \spad{x} by \spad{s}.

@

<<category RLINSET RightLinearSet>>=
)abbrev category RLINSET RightLinearSet
++ Author: Gabriel Dos Reis
++ Date Created: May 31, 2009
++ Date Last Modified: May 31, 2009
++ Description:
++   A set is an \spad{S}-right linear set if it is stable by right-dilation
++   by elements in the semigroup \spad{S}.
++ See Also: LeftLinearSet.
RightLinearSet(S: SemiGroup): Category == SetCategory with
   *: (%,S) -> %       
     ++ \spad{x*s} is the right-dilation of \spad{x} by \spad{s}.

@

<<category LINSET LinearSet>>=
)abbrev category LINSET LinearSet
++ Author: Gabriel Dos Reis
++ Date Created: May 31, 2009
++ Date Last Modified: May 31, 2009
++ Description:
++   A set is an \spad{S}-linear set if it is stable by dilation
++   by elements in the semigroup \spad{S}.
++ See Also: LeftLinearSet, RightLinearSet.
LinearSet(S: SemiGroup): Category == Join(LeftLinearSet S, RightLinearSet S)

@


\section{category ABELGRP AbelianGroup}
<<category ABELGRP AbelianGroup>>=
)abbrev category ABELGRP AbelianGroup
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The class of abelian groups, i.e. additive monoids where
++ each element has an additive inverse.
++
++ Axioms:
++   \spad{-(-x) = x}
++   \spad{x+(-x) = 0}
-- following domain must be compiled with subsumption disabled
AbelianGroup(): Category == Join(CancellationAbelianMonoid, LeftLinearSet Integer) with
      -: % -> %           ++ \spad{-x} is the additive inverse of \spad{x}    
      -: (%,%) -> %       ++ \spad{x-y} is the difference of \spad{x} 
                          ++ and \spad{y} i.e. \spad{x + (-y)}.
    add
      (x:% - y:%):% == x+(-y)
      subtractIfCan(x:%, y:%) == just(x-y)
      n:NonNegativeInteger * x:% == (n::Integer) * x
      import RepeatedDoubling(%)
      if not (% has Ring) then
        n:Integer * x:% ==
          zero? n => 0
          positive? n => double(n pretend PositiveInteger,x)
          double((-n) pretend PositiveInteger,-x)
      opposite?(x,y) == x = -y

@

\section{category ABELMON AbelianMonoid}
<<category ABELMON AbelianMonoid>>=
)abbrev category ABELMON AbelianMonoid
++ Author:
++ Date Created:
++ Date Last Updated: May 10, 2013.
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The class of multiplicative monoids, i.e. semigroups with an
++ additive identity element.
++
++ Axioms:
++   \spad{leftIdentity("+":(%,%)->%,0)}\tab{30}\spad{ 0+x=x }
++   \spad{rightIdentity("+":(%,%)->%,0)}\tab{30}\spad{ x+0=x }
-- following domain must be compiled with subsumption disabled
-- define SourceLevelSubset to be EQUAL
AbelianMonoid(): Category == AbelianSemiGroup with
      0: % 
	++ 0 is the additive identity element.
      sample: %
	++ sample yields a value of type %
      zero?: % -> Boolean
	++ zero?(x) tests if x is equal to 0.
      *: (NonNegativeInteger,%) -> %
        ++ n * x is left-multiplication by a non negative integer
      opposite?: (%,%) -> Boolean
        ++ \spad{opposite?(x,y)} holds if the sum of \spad{x}
        ++ and \spad{y} is \spad{0}.
    add
      import RepeatedDoubling(%)
      zero? x == x = 0
      n:PositiveInteger * x:% == (n::NonNegativeInteger) * x
      sample() == 0
      if not (% has Ring) then
        n:NonNegativeInteger * x:% ==
          zero? n => 0
          double(n pretend PositiveInteger,x)
      opposite?(x,y) == zero?(x + y)

@


\section{category ABELSG AbelianSemiGroup}

<<category ABELSG AbelianSemiGroup>>=
import PositiveInteger
)abbrev category ABELSG AbelianSemiGroup
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ the class of all additive (commutative) semigroups, i.e.
++ a set with a commutative and associative operation \spadop{+}.
++
++ Axioms:
++   \spad{associative("+":(%,%)->%)}\tab{30}\spad{ (x+y)+z = x+(y+z) }
++   \spad{commutative("+":(%,%)->%)}\tab{30}\spad{ x+y = y+x }
AbelianSemiGroup(): Category == SetCategory with
    --operations
      +: (%,%) -> %                  ++ x+y computes the sum of x and y.
      *: (PositiveInteger,%) -> %
        ++ n*x computes the left-multiplication of x by the positive integer n.
        ++ This is equivalent to adding x to itself n times.
    add
      import RepeatedDoubling(%)
      if not (% has Ring) then
        n:PositiveInteger * x:% == double(n,x)

@

\section{category ALGEBRA Algebra}
<<category ALGEBRA Algebra>>=
)abbrev category ALGEBRA Algebra
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of associative algebras (modules which are themselves rings).
++
++ Axioms:
++   \spad{(b+c)::% = (b::%) + (c::%)}
++   \spad{(b*c)::% = (b::%) * (c::%)}
++   \spad{(1::R)::% = 1::%}
++   \spad{b*x = (b::%)*x}
++   \spad{r*(a*b) = (r*a)*b = a*(r*b)}
Algebra(R:CommutativeRing): Category ==
  Join(Ring, Module R, CoercibleFrom R)
 add
  coerce(x:R):% == x * 1$%

@

\section{category BASTYPE BasicType}

<<category BASTYPE BasicType>>=
import Boolean
)abbrev category BASTYPE BasicType
--% BasicType
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ \spadtype{BasicType} is the basic category for describing a collection
++ of elements with \spadop{=} (equality).
BasicType(): Category == Type with
      =: (%,%) -> Boolean    ++ x=y tests if x and y are equal.
      ~=: (%,%) -> Boolean   ++ x~=y tests if x and y are not equal.
      before?: (%,%) -> Boolean
        ++ \spad{before?(x,y)} holds if the system representation
        ++ of \spad{x} comes before that of \spad{y} in a
        ++ an implementation defined manner.
   add
      x = y == not before?(x,y) and not before?(y,x)
      x:% ~= y:% == not(x=y)
      before?(x,y) == %before?(x,y)$Foreign(Builtin)

@

\section{Ordered Types}

<<category ORDTYPE OrderedType>>=
)abbrev category ORDTYPE OrderedType
++ Author: Gabriel Dos Reis
++ Date Created: June 28, 2010
++ Date Last Modified: June 28, 2010
++ See Also: OrderedSet
++ Description:
++   Category of types equipped with a total ordering.
++ Axioms:
++   forall(x,y)
++     x > y  <=> y < x
++     x <= y <=> not(y > x)
++     x >= y <=> not(x < y)
++     x <= y and x >= y => x = y
OrderedType(): Category == BasicType with
    <  : (%,%) -> Boolean
      ++ \spad{x < y} holds if \spad{x} is less than \spad{y} in the
      ++ current domain.
    >  : (%,%) -> Boolean
      ++ \spad{x > y} holds if \spad{x} is greater than \spad{y} in the
      ++ current domain.
    <= : (%,%) -> Boolean
      ++ \spad{x <= y} holds if \spad{x} is less or equal than \spad{y}
      ++ in the current domain.
    >= : (%,%) -> Boolean
      ++ \spad{x <= y} holds if \spad{x} is greater or equal than \spad{y}
      ++ in the current domain.
    max: (%,%) -> %
      ++ \spad{max(x,y)} returns the maximum of \spad{x} and \spad{y}
      ++ relative to the ordering.
    min: (%,%) -> %
      ++ \spad{min(x,y)} returns the minimum of \spad{x} and \spad{y}
      ++ relative to the ordering.
  add
    x > y  == y < x
    x <= y == not(y < x)
    x >= y == not(x < y)
    x = y  == not(x < y or y < x)
    max(x,y) ==
      x < y => y
      x
    min(x,y) ==
      x < y => x
      y
    before?(x,y) == x < y

@

\section{Ordered Structure}

<<domain ORDSTRCT OrderedStructure>>=
++ Author: Gabriel Dos Reis
++ Date Created: June 28, 2010
++ Date Last Modified: June 28, 2010
++ See Also: OrderedType
++ Description:
++   This domain turns any total ordering \spad{f} on a type \spad{T} into
++   a model of the category \spadtype{OrderedType}.
)abbrev domain ORDSTRCT OrderedStructure
OrderedStructure(T: Type,f: (T,T) -> Boolean): Public == Private where
  Public == Join(OrderedType,HomotopicTo T) with
    if T has CoercibleTo OutputForm then CoercibleTo OutputForm
  Private == add
    Rep == T
    coerce(x: %): T == rep x
    coerce(y: T): % == per y
    x < y  == f(rep x,rep y)
    if T has CoercibleTo OutputForm then
      coerce(x: %): OutputForm == rep(x)::OutputForm

@



\section{category BMODULE BiModule}

<<category BMODULE BiModule>>=
)abbrev category BMODULE BiModule
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A \spadtype{BiModule} is both a left and right module with respect
++ to potentially different rings.
++
++ Axiom:
++   \spad{ r*(x*s) = (r*x)*s }
BiModule(R:Ring,S:Ring):Category ==
  Join(LeftModule(R),RightModule(S)) 

@
\section{category CABMON CancellationAbelianMonoid}
<<category CABMON CancellationAbelianMonoid>>=
)abbrev category CABMON CancellationAbelianMonoid
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References: Davenport & Trager I
++ Description:
++ This is an \spadtype{AbelianMonoid} with the cancellation property, i.e.
++ \spad{ a+b = a+c => b=c }.
++ This is formalised by the partial subtraction operator,
++ which satisfies the axioms listed below:
++
++ Axioms:
++   \spad{c = a+b <=> c-b = a}
CancellationAbelianMonoid(): Category == AbelianMonoid with
    --operations
      subtractIfCan: (%,%) -> Maybe %
         ++ subtractIfCan(x, y) returns an element z such that \spad{z+y=x}
         ++ or \spad{nothing} if no such element exists.

@

\section{category CHARNZ CharacteristicNonZero}
<<category CHARNZ CharacteristicNonZero>>=
)abbrev category CHARNZ CharacteristicNonZero
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Rings of Characteristic Non Zero
CharacteristicNonZero():Category == Ring with
    charthRoot: % -> Maybe %
       ++ charthRoot(x) returns the pth root of x
       ++ where p is the characteristic of the ring.

@
\section{category CHARZ CharacteristicZero}
<<category CHARZ CharacteristicZero>>=
)abbrev category CHARZ CharacteristicZero
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Rings of Characteristic Zero.
CharacteristicZero():Category == Ring

@
\section{category COMRING CommutativeRing}
<<category COMRING CommutativeRing>>=
)abbrev category COMRING CommutativeRing
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of commutative rings with unity, i.e. rings where
++ \spadop{*} is commutative, and which have a multiplicative identity.
++ element.
--CommutativeRing():Category == Join(Ring,BiModule(%:Ring,%:Ring)) with
CommutativeRing():Category == Join(Ring,BiModule(%,%)) with
    commutative("*")  ++ multiplication is commutative.

@

\section{Differential Domain}

<<category DIFFDOM DifferentialDomain>>=
)abbrev category DIFFDOM DifferentialDomain
++ Author: Gabriel Dos Reis
++ Date Created: June 13, 2010
++ Date Last Modified: June 13, 2010
++ Description:
++   This category captures the interface of domains with a distinguished
++   operation named \spad{differentiate}.  Usually, additional properties
++   are wanted.  For example, that it obeys the usual Leibniz identity
++   of differentiation of product, in case of differential rings. One
++   could also want \spad{differentiate} to obey the chain rule when
++   considering differential manifolds.
++   The lack of specific requirement in this category is an implicit
++   admission that currently \Language{} is not expressive enough to
++   express the most general notion of differentiation in an adequate
++   manner, suitable for computational purposes.
DifferentialDomain(T: Type): Category == Type with
    differentiate: % -> T
      ++ \spad{differentiate x} compute the derivative of \spad{x}.
    D: % -> T
      ++ \spad{D x} is a shorthand for \spad{differentiate x}
  add
    D x ==
      differentiate x

@

\section{Differential Space}

<<category DIFFSPC DifferentialSpace>>=
)abbrev category DIFFSPC DifferentialSpace
++ Author: Gabriel Dos Reis
++ Date Created: June 13, 2010
++ Date Last Modified: June 15, 2010
++ Description:
++   This category is like \spadtype{DifferentialDomain} where the
++   target of the differentiation operator is the same as its source.
DifferentialSpace(): Category == DifferentialDomain % with
    differentiate: (%, NonNegativeInteger) -> %
      ++ \spad{differentiate(x,n)} returns the \spad{n}-th
      ++ derivative of \spad{x}.
    D: (%, NonNegativeInteger) -> %
      ++ \spad{D(x, n)} returns the \spad{n}-th derivative of \spad{x}.
  add
    differentiate(r, n) ==
      for i in 1..n repeat r := differentiate r
      r
    D(r,n) ==
      differentiate(r,n)

@


\section{Differential Space Extension}

<<category DSEXT DifferentialSpaceExtension>>=
)abbrev category DSEXT DifferentialSpaceExtension
++ Author:  Gabriel Dos Reis
++ Date Created: June 16, 2010
++ Date Last Updated: Jun 16, 2010
++ Related Constructors: Module, DifferentialSpace
++ Also See:
++ Description:
++   Extension of a base differential space with a derivation.
++
DifferentialSpaceExtension(R: Type): Category == Type with
    differentiate: (%,R -> R) -> %
      ++ \spad{differentiate(x,d)} computes the derivative of
      ++ \spad{x}, extending differentiation \spad{d} on \spad{R}.
    differentiate: (%,R -> R,NonNegativeInteger) -> %
      ++ \spad{differentiate(x,d,n)} computes the \spad{n}-th derivative
      ++ of \spad{x} using a derivation extending \spad{d} on \spad{R}.
    D: (%,R -> R) -> %
      ++ \spad{D(x,d)} is a shorthand for \spad{differentiate(x,d)}.
    D: (%,R -> R,NonNegativeInteger) -> %
      ++ \spad{D(x,d,n)} is a shorthand for \spad{differentiate(x,d,n)}.
    if R has DifferentialSpace then DifferentialSpace
    if R has PartialDifferentialSpace Symbol then
      PartialDifferentialSpace Symbol
  add
    differentiate(x: %, d: R -> R, n: NonNegativeInteger):% ==
      for i in 1..n repeat x := differentiate(x,d)
      x

    D(x: %, d: R -> R) ==
      differentiate(x, d)

    D(x: %, d: R -> R, n: NonNegativeInteger) ==
      differentiate(x,d,n)

    if R has DifferentialSpace then
      differentiate x == differentiate(x, differentiate$R)

    if R has PartialDifferentialSpace Symbol then
      differentiate(x:%, v: Symbol):% ==
        differentiate(x, differentiate(#1, v)$R)

@


\section{category DIFRING DifferentialRing}
<<category DIFRING DifferentialRing>>=
)abbrev category DIFRING DifferentialRing
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ An ordinary differential ring, that is, a ring with an operation
++ \spadfun{differentiate}.
++
++ Axioms:
++   \spad{differentiate(x+y) = differentiate(x)+differentiate(y)}
++   \spad{differentiate(x*y) = x*differentiate(y) + differentiate(x)*y}

DifferentialRing(): Category == Join(Ring,DifferentialSpace)

@


\section{Differential Module}

<<category DIFFMOD DifferentialModule>>=
)abbrev category DIFFMOD DifferentialModule
++ Author:  Gabriel Dos Reis
++ Date Created: June 14, 2010
++ Date Last Updated: Jun 16, 2010
++ Related Constructors: Module, DifferentialSpace
++ Also See:
++ Description:
++   An R-module equipped with a distinguised differential operator.
++   If R is a differential ring, then differentiation on the module
++   should extend differentiation on the differential ring R.  The
++   latter can be the null operator. In that case, the differentiation
++   operator on the module is just an R-linear operator.  For that
++   reason, we do not require that the ring R be a DifferentialRing; 
++
++ Axioms:
++   \spad{differentiate(x + y) = differentiate(x) + differentiate(x)}
++   \spad{differentiate(r*y) = r*differentiate(y) + differentiate(r)*y}

DifferentialModule(R: Ring): Category ==
  Join(BiModule(R,R), DifferentialSpace) with
    if R has CommutativeRing then Module R
@


\section{category DIFEXT DifferentialExtension}
<<category DIFEXT DifferentialExtension>>=
)abbrev category DIFEXT DifferentialExtension
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Differential extensions of a ring R.
++ Given a differentiation on R, extend it to a differentiation on %.

DifferentialExtension(R:Ring): Category ==
  Join(Ring,DifferentialSpaceExtension R) with
    if R has DifferentialRing then DifferentialRing
    if R has PartialDifferentialRing(Symbol) then
             PartialDifferentialRing(Symbol)

@

\section{Differential Module Extension}

<<category DMEXT DifferentialModuleExtension>>=
)abbrev category DMEXT DifferentialModuleExtension
++ Author:  Gabriel Dos Reis
++ Date Created: June 16, 2010
++ Date Last Updated: Jun 16, 2010
++ Related Constructors: Module, DifferentialSpaceExtension
++ Also See:
++   DifferentialExtension
++ Description:
++   Category of modules that extend differential rings.
++
DifferentialModuleExtension(R: Ring): Category ==
  Join(BiModule(R,R),DifferentialSpaceExtension R) with
    if R has DifferentialSpace then DifferentialModule R
    if R has PartialDifferentialSpace Symbol then
      PartialDifferentialModule(R,Symbol)
@


\section{category DIVRING DivisionRing}
<<category DIVRING DivisionRing>>=
)abbrev category DIVRING DivisionRing
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A division ring (sometimes called a skew field),
++ i.e. a not necessarily commutative ring where
++ all non-zero elements have multiplicative inverses.

DivisionRing(): Category ==
 Join(EntireRing, Algebra Fraction Integer) with
      **: (%,Integer) -> %
          ++ x**n returns x raised to the integer power n.
      inv : % -> %
          ++ inv x returns the multiplicative inverse of x.
          ++ Error: if x is 0.
-- Q-algebra is a lie, should be conditional on characteristic 0,
-- but knownInfo cannot handle the following commented
--    if % has CharacteristicZero then Algebra Fraction Integer
    add
      n: Integer
      x: %
      import RepeatedSquaring(%)
      x ** n: Integer ==
         zero? n => 1
         zero? x =>
            negative? n => error "division by zero"
            x
         negative? n =>
            expt(inv x,(-n) pretend PositiveInteger)
         expt(x,n pretend PositiveInteger)
--    if % has CharacteristicZero() then
      q:Fraction(Integer) * x:% == numer(q) * inv(denom(q)::%) * x

@

\section{category ENTIRER EntireRing}
<<category ENTIRER EntireRing>>=
)abbrev category ENTIRER EntireRing
++ Author:
++ Date Created:
++ Date Last Updated: May 10, 2013.
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Entire Rings (non-commutative Integral Domains), i.e. a ring
++ not necessarily commutative which has no zero divisors.
++
++ Axioms:
++   \spad{ab=0 => a=0 or b=0}  -- known as noZeroDivisors
++   \spad{not(1=0)}
EntireRing():Category == Join(Ring,BiModule(%,%)) with
      noZeroDivisors  ++ if a product is zero then one of the factors
                      ++ must be zero.
    add
      annihilate?(x,y) == zero? x or zero? y    

@

\section{category EUCDOM EuclideanDomain}
<<category EUCDOM EuclideanDomain>>=
)abbrev category EUCDOM EuclideanDomain
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A constructive euclidean domain, i.e. one can divide producing
++ a quotient and a remainder where the remainder is either zero
++ or is smaller (\spadfun{euclideanSize}) than the divisor.
++
++ Conditional attributes:
++   multiplicativeValuation\tab{25}\spad{Size(a*b)=Size(a)*Size(b)}
++   additiveValuation\tab{25}\spad{Size(a*b)=Size(a)+Size(b)}

EuclideanDomain(): Category == PrincipalIdealDomain with
    --operations
      sizeLess?: (%,%) -> Boolean
         ++ sizeLess?(x,y) tests whether x is strictly
         ++ smaller than y with respect to the \spadfunFrom{euclideanSize}{EuclideanDomain}.
      euclideanSize: % -> NonNegativeInteger
         ++ euclideanSize(x) returns the euclidean size of the element x.
         ++ Error: if x is zero.
      divide: (%,%) -> Record(quotient:%,remainder:%)
         ++ divide(x,y) divides x by y producing a record containing a
         ++ \spad{quotient} and \spad{remainder},
         ++ where the remainder is smaller (see \spadfunFrom{sizeLess?}{EuclideanDomain})
         ++ than the divisor y.
      quo : (%,%) -> %
         ++ x quo y is the same as \spad{divide(x,y).quotient}.
         ++ See \spadfunFrom{divide}{EuclideanDomain}.
      rem: (%,%) -> %
         ++ x rem y is the same as \spad{divide(x,y).remainder}.
         ++ See \spadfunFrom{divide}{EuclideanDomain}.
      extendedEuclidean: (%,%) -> Record(coef1:%,coef2:%,generator:%)
                     -- formerly called princIdeal
            ++ extendedEuclidean(x,y) returns a record rec where
            ++ \spad{rec.coef1*x+rec.coef2*y = rec.generator} and
            ++ rec.generator is a gcd of x and y.
            ++ The gcd is unique only
            ++ up to associates if \spadatt{canonicalUnitNormal} is not asserted.
            ++ \spadfun{principalIdeal} provides a version of this operation
            ++ which accepts an arbitrary length list of arguments.
      extendedEuclidean: (%,%,%) -> Union(Record(coef1:%,coef2:%),"failed")
                     -- formerly called expressIdealElt
          ++ extendedEuclidean(x,y,z) either returns a record rec
          ++ where \spad{rec.coef1*x+rec.coef2*y=z} or returns "failed"
          ++ if z cannot be expressed as a linear combination of x and y.
      multiEuclidean: (List %,%) -> Union(List %,"failed")
          ++ multiEuclidean([f1,...,fn],z) returns a list of coefficients
          ++ \spad{[a1, ..., an]} such that
          ++ \spad{ z / prod fi = sum aj/fj}.
          ++ If no such list of coefficients exists, "failed" is returned.
    add
      -- declarations
      x,y,z: %
      l: List %
      -- definitions
      sizeLess?(x,y) ==
            zero? y => false
            zero? x => true
            euclideanSize(x)<euclideanSize(y)
      x quo y == divide(x,y).quotient --divide must be user-supplied
      x rem y == divide(x,y).remainder
      x exquo y ==
         zero? x => 0
         zero? y => "failed"
         qr:=divide(x,y)
         zero?(qr.remainder) => qr.quotient
         "failed"
      gcd(x,y) ==                --Euclidean Algorithm
         x:=unitCanonical x
         y:=unitCanonical y
         while not zero? y repeat
            (x,y):= (y,x rem y)
            y:=unitCanonical y             -- this doesn't affect the
                                           -- correctness of Euclid's algorithm,
                                           -- but
                                           -- a) may improve performance
                                           -- b) ensures gcd(x,y)=gcd(y,x)
                                           --    if canonicalUnitNormal
         x
      IdealElt ==> Record(coef1:%,coef2:%,generator:%)
      unitNormalizeIdealElt(s:IdealElt):IdealElt ==
         (u,c,a):=unitNormal(s.generator)
         one? a => s
         [a*s.coef1,a*s.coef2,c]$IdealElt
      extendedEuclidean(x,y) ==         --Extended Euclidean Algorithm
         s1:=unitNormalizeIdealElt([1$%,0$%,x]$IdealElt)
         s2:=unitNormalizeIdealElt([0$%,1$%,y]$IdealElt)
         zero? y => s1
         zero? x => s2
         while not zero?(s2.generator) repeat
            qr:= divide(s1.generator, s2.generator)
            s3:=[s1.coef1 - qr.quotient * s2.coef1,
                 s1.coef2 - qr.quotient * s2.coef2, qr.remainder]$IdealElt
            s1:=s2
            s2:=unitNormalizeIdealElt s3
         if not(zero?(s1.coef1)) and not sizeLess?(s1.coef1,y)
           then
              qr:= divide(s1.coef1,y)
              s1.coef1:= qr.remainder
              s1.coef2:= s1.coef2 + qr.quotient * x
              s1 := unitNormalizeIdealElt s1
         s1

      TwoCoefs ==> Record(coef1:%,coef2:%)
      extendedEuclidean(x,y,z) ==
         zero? z => [0,0]$TwoCoefs
         s:= extendedEuclidean(x,y)
         (w:= z exquo s.generator) case "failed" => "failed"
         zero? y =>
            [s.coef1 * w, s.coef2 * w]$TwoCoefs
         qr:= divide((s.coef1 * w), y)
         [qr.remainder, s.coef2 * w + qr.quotient * x]$TwoCoefs
      principalIdeal l ==
         l = [] => error "empty list passed to principalIdeal"
         rest l = [] =>
              uca:=unitNormal(first l)
              [[uca.unit],uca.canonical]
         rest rest l = [] =>
             u:= extendedEuclidean(first l,second l)
             [[u.coef1, u.coef2], u.generator]
         v:=principalIdeal rest l
         u:= extendedEuclidean(first l,v.generator)
         [[u.coef1,:[u.coef2*vv for vv in v.coef]],u.generator]
      expressIdealMember(l,z) ==
         zero? z => just [0 for v in l]
         pid := principalIdeal l
         (q := z exquo (pid.generator)) case "failed" => nothing
         just [q*v for v in pid.coef]
      multiEuclidean(l,z) ==
         n := #l
         zero? n => error "empty list passed to multiEuclidean"
         one? n => [z]
         l1 := copy l
         l2 := split!(l1, n quo 2)
         u:= extendedEuclidean(*/l1, */l2, z)
         u case "failed" => "failed"
         v1 := multiEuclidean(l1,u.coef2)
         v1 case "failed" => "failed"
         v2 := multiEuclidean(l2,u.coef1)
         v2 case "failed" => "failed"
         concat(v1,v2)

@

\section{category FIELD Field}

<<category FIELD Field>>=
)abbrev category FIELD Field
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of commutative fields, i.e. commutative rings
++ where all non-zero elements have multiplicative inverses.
++ The \spadfun{factor} operation while trivial is useful to have defined.
++
++ Axioms:
++   \spad{a*(b/a) = b}
++   \spad{inv(a) = 1/a}

Field(): Category == Join(EuclideanDomain,UniqueFactorizationDomain,
  DivisionRing) with
    --operations
      /: (%,%) -> %
        ++ x/y divides the element x by the element y.
        ++ Error: if y is 0.
      canonicalUnitNormal  ++ either 0 or 1.
    add
      --declarations
      x,y: %
      n: Integer
      -- definitions
      UCA ==> Record(unit:%,canonical:%,associate:%)
      unitNormal(x) ==
          if zero? x then [1$%,0$%,1$%]$UCA else [x,1$%,inv(x)]$UCA
      unitCanonical(x) == if zero? x then x else 1
      associates?(x,y) == if zero? x then zero? y else not(zero? y)
      inv x ==((u:=recip x) case "failed" => error "not invertible"; u)
      x exquo y == (zero? y => "failed"; x / y)
      gcd(x,y) == 1
      euclideanSize(x) == 0
      prime? x == false
      squareFree x == x::Factored(%)
      factor x == x::Factored(%)
      x / y == (zero? y => error "catdef: division by zero"; x * inv(y))
      divide(x,y) == [x / y,0]

@
\section{category FINITE Finite}
<<category FINITE Finite>>=
)abbrev category FINITE Finite
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of domains composed of a finite set of elements.
++ We include the functions \spadfun{lookup} and \spadfun{index} to give a bijection
++ between the finite set and an initial segment of positive integers.
++
++ Axioms:
++   \spad{lookup(index(n)) = n}
++   \spad{index(lookup(s)) = s}

Finite(): Category == SetCategory with
      size: () ->  NonNegativeInteger
        ++ size() returns the number of elements in the set.
      index: PositiveInteger -> %
        ++ index(i) takes a positive integer i less than or equal
        ++ to \spad{size()} and
        ++ returns the \spad{i}-th element of the set. This operation establishs a bijection
        ++ between the elements of the finite set and \spad{1..size()}.
      lookup: % -> PositiveInteger
        ++ lookup(x) returns a positive integer such that
        ++ \spad{x = index lookup x}.
      random: () -> %
        ++ random() returns a random element from the set.
  add
      --FIXME: Tthe only purpose of this local function is to bring
      --FIXME: the compiler to admission that the successor of a
      --FIXME: nonnegative integer has positive value.
      --FIXME: Take it out when the its logic is sufficiently advanced.
      succ(x: NonNegativeInteger): PositiveInteger ==
        (1 + x) : PositiveInteger
      random() ==
        index succ random(size())$NonNegativeInteger
@
\section{category FLINEXP FullyLinearlyExplicitRingOver}
<<category FLINEXP FullyLinearlyExplicitRingOver>>=
)abbrev category FLINEXP FullyLinearlyExplicitRingOver
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ S is \spadtype{FullyLinearlyExplicitRingOver R} means that S is a
++ \spadtype{LinearlyExplicitRingOver R} and, in addition, if R is a
++ \spadtype{LinearlyExplicitRingOver Integer}, then so is S
FullyLinearlyExplicitRingOver(R:Ring):Category ==
  LinearlyExplicitRingOver R with
    if (R has LinearlyExplicitRingOver Integer) then
            LinearlyExplicitRingOver Integer
 add
  if not(R is Integer) then
    if (R has LinearlyExplicitRingOver Integer) then
      reducedSystem(m:Matrix %):Matrix(Integer) ==
        reducedSystem(reducedSystem(m)@Matrix(R))

      reducedSystem(m:Matrix %, v:Vector %):
        Record(mat:Matrix(Integer), vec:Vector(Integer)) ==
          rec := reducedSystem(m, v)@Record(mat:Matrix R, vec:Vector R)
          reducedSystem(rec.mat, rec.vec)

@
\section{category GCDDOM GcdDomain}
<<category GCDDOM GcdDomain>>=
)abbrev category GCDDOM GcdDomain
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References: Davenport & Trager 1
++ Description:
++ This category describes domains where
++ \spadfun{gcd} can be computed but where there is no guarantee
++ of the existence of \spadfun{factor} operation for factorisation into irreducibles.
++ However, if such a \spadfun{factor} operation exist, factorization will be
++ unique up to order and units.

GcdDomain(): Category == IntegralDomain with
    --operations
      gcd: (%,%) -> %
            ++ gcd(x,y) returns the greatest common divisor of x and y.
            -- gcd(x,y) = gcd(y,x) in the presence of canonicalUnitNormal,
            -- but not necessarily elsewhere
      gcd: List(%) -> %
            ++ gcd(l) returns the common gcd of the elements in the list l.
      lcm: (%,%) -> %
            ++ lcm(x,y) returns the least common multiple of x and y.
            -- lcm(x,y) = lcm(y,x) in the presence of canonicalUnitNormal,
            -- but not necessarily elsewhere
      lcm: List(%) -> %
            ++ lcm(l) returns the least common multiple of the elements of the list l.
      gcdPolynomial: (SparseUnivariatePolynomial %, SparseUnivariatePolynomial %) ->
           SparseUnivariatePolynomial %
	    ++ gcdPolynomial(p,q) returns the greatest common divisor (gcd) of 
	    ++ univariate polynomials over the domain
    add
      lcm(x: %,y: %) ==
        zero? y => 0
        zero? x => 0
        LCM : Union(%,"failed") := y exquo gcd(x,y)
        LCM case % =>  x * LCM
        error "bad gcd in lcm computation"
      lcm(l:List %) == reduce(lcm,l,1,0)
      gcd(l:List %) == reduce(gcd,l,0,1)
      SUP ==> SparseUnivariatePolynomial
      gcdPolynomial(p1,p2) ==
        zero? p1 => unitCanonical p2
        zero? p2 => unitCanonical p1
        c1:= content(p1); c2:= content(p2)
        p1:= (p1 exquo c1)::SUP %
        p2:= (p2 exquo c2)::SUP %
        if positive?(e1:=minimumDegree p1) then
          p1:=(p1 exquo monomial(1,e1))::SUP %
        if positive?(e2:=minimumDegree p2) then
          p2:=(p2 exquo monomial(1,e2))::SUP %
        e1:=min(e1,e2); c1:=gcd(c1,c2)
        p1:=
           zero? degree p1 or zero? degree p2 => monomial(c1,0)
           p:= subResultantGcd(p1,p2)
           zero? degree p => monomial(c1,0)
           c2:= gcd(leadingCoefficient p1,leadingCoefficient p2)
           unitCanonical(c1 * primitivePart(((c2*p) exquo leadingCoefficient p)::SUP %))
        zero? e1 => p1
        monomial(1,e1)*p1

@

\section{category GROUP Group}
<<category GROUP Group>>=
)abbrev category GROUP Group
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The class of multiplicative groups, i.e. monoids with
++ multiplicative inverses.
++
++ Axioms:
++   \spad{leftInverse("*":(%,%)->%,inv)}\tab{30}\spad{ inv(x)*x = 1 }
++   \spad{rightInverse("*":(%,%)->%,inv)}\tab{30}\spad{ x*inv(x) = 1 }
Group(): Category == Monoid with
    --operations
      inv: % -> %             ++ inv(x) returns the inverse of x.
      /: (%,%) -> %           ++ x/y is the same as x times the inverse of y.
      **: (%,Integer) -> %    ++ x**n returns x raised to the integer power n.
      conjugate: (%,%) -> %
        ++ conjugate(p,q) computes \spad{inv(q) * p * q}; this is 'right action
        ++ by conjugation'.
      commutator: (%,%) -> %
        ++ commutator(p,q) computes \spad{inv(p) * inv(q) * p * q}.
    add
      import RepeatedSquaring(%)
      x:% / y:% == x*inv(y)
      recip(x:%) == inv(x)
      x:% ** n:Integer ==
         zero? n => 1
         negative? n => expt(inv(x),(-n) pretend PositiveInteger)
         expt(x,n pretend PositiveInteger)
      conjugate(p,q) == inv(q) * p * q
      commutator(p,q) == inv(p) * inv(q) * p * q

@
\section{category INTDOM IntegralDomain}
<<category INTDOM IntegralDomain>>=
)abbrev category INTDOM IntegralDomain
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References: Davenport & Trager I
++ Description:
++ The category of commutative integral domains, i.e. commutative
++ rings with no zero divisors.
++
++ Conditional attributes:
++   canonicalUnitNormal\tab{20}the canonical field is the same for all associates

IntegralDomain(): Category ==
  Join(CommutativeRing, Algebra(%), EntireRing) with
    --operations
      exquo: (%,%) -> Union(%,"failed")
            ++ exquo(a,b) either returns an element c such that
            ++ \spad{c*b=a} or "failed" if no such element can be found.
      unitNormal: % -> Record(unit:%,canonical:%,associate:%)
            ++ unitNormal(x) tries to choose a canonical element
            ++ from the associate class of x.
            ++ The attribute canonicalUnitNormal, if asserted, means that
            ++ the "canonical" element is the same across all associates of x
            ++ if \spad{unitNormal(x) = [u,c,a]} then
            ++ \spad{u*c = x}, \spad{a*u = 1}.
      unitCanonical: % -> %
            ++ \spad{unitCanonical(x)} returns \spad{unitNormal(x).canonical}.
      associates?: (%,%) -> Boolean
        ++ associates?(x,y) tests whether x and y are associates, i.e.
        ++ differ by a unit factor.
      unit?: % -> Boolean
        ++ unit?(x) tests whether x is a unit, i.e. is invertible.
 add
      -- declaration
      x,y: %
      -- definitions
      UCA ==> Record(unit:%,canonical:%,associate:%)
      if not (% has Field) then
        unitNormal(x) == [1$%,x,1$%]$UCA -- the non-canonical definition
      unitCanonical(x) == unitNormal(x).canonical -- always true
      recip(x) == if zero? x then "failed" else 1$% exquo x
      unit?(x) == (recip x case "failed" => false; true)
      if % has canonicalUnitNormal then
         associates?(x,y) ==
           (unitNormal x).canonical = (unitNormal y).canonical
       else
         associates?(x,y) ==
           zero? x => zero? y
           zero? y => false
           x exquo y case "failed" => false
           y exquo x case "failed" => false
           true

@


\section{category LMODULE LeftModule}
<<category LMODULE LeftModule>>=
)abbrev category LMODULE LeftModule
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of left modules over an rng (ring not necessarily with unit).
++ This is an abelian group which supports left multiplation by elements of
++ the rng.
++
++ Axioms:
++   \spad{ (a*b)*x = a*(b*x) }
++   \spad{ (a+b)*x = (a*x)+(b*x) }
++   \spad{ a*(x+y) = (a*x)+(a*y) }
LeftModule(R:Rng):Category == Join(AbelianGroup, LeftLinearSet R)

@

\section{category LINEXP LinearlyExplicitRingOver}
<<category LINEXP LinearlyExplicitRingOver>>=
)abbrev category LINEXP LinearlyExplicitRingOver
++ Author:
++ Date Created:
++ Date Last Updated: June 18, 2010
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++    An extension of left-module with an explicit linear dependence test.
LinearlyExplicitRingOver(R:Ring): Category == LeftModule R with
  leftReducedSystem: Vector % -> Matrix R
    ++ \spad{leftReducedSystem [v1,...,vn]} returns a matrix \spad{M}
    ++ with coefficients in \spad{R} such that the system of equations
    ++ \spad{c1*v1 + ... + cn*vn = 0$%} has the same solution as
    ++ \spad{c * M = 0} where \spad{c} is the row vector \spad{[c1,...cn]}.
  leftReducedSystem: (Vector %,%) -> Record(mat: Matrix R,vec: Vector R)
    ++ \spad{reducedSystem([v1,...,vn],u)} returns a matrix \spad{M}
    ++ with coefficients in \spad{R} and a vector \spad{w} such
    ++ that the system of equations \spad{c1*v1 + ... + cn*vn = u}
    ++ has the same solution as \spad{c * M = w} where \spad{c}
    ++ is the row vector \spad{[c1,...cn]}.
  reducedSystem: Matrix % -> Matrix R
    ++ reducedSystem(A) returns a matrix B such that \spad{A x = 0} and \spad{B x = 0}
    ++ have the same solutions in R.
  reducedSystem: (Matrix %,Vector %) -> Record(mat:Matrix R,vec:Vector R)
    ++ reducedSystem(A, v) returns a matrix B and a vector w such that
    ++ \spad{A x = v} and \spad{B x = w} have the same solutions in R.

@
\section{category MODULE Module}
<<category MODULE Module>>=
)abbrev category MODULE Module
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of modules over a commutative ring.
++
++ Axioms:
++   \spad{1*x = x}
++   \spad{(a*b)*x = a*(b*x)}
++   \spad{(a+b)*x = (a*x)+(b*x)}
++   \spad{a*(x+y) = (a*x)+(a*y)}
Module(R:CommutativeRing): Category == Join(BiModule(R,R), LinearSet R)
  add
    if not(R is %) then x:%*r:R == r*x

@
\section{category MONOID Monoid}
<<category MONOID Monoid>>=
)abbrev category MONOID Monoid
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The class of multiplicative monoids, i.e. semigroups with a
++ multiplicative identity element.
++
++ Axioms:
++    \spad{leftIdentity("*":(%,%)->%,1)}\tab{30}\spad{1*x=x}
++    \spad{rightIdentity("*":(%,%)->%,1)}\tab{30}\spad{x*1=x}
++
Monoid(): Category == SemiGroup with
    --operations
      1:              %                   ++ 1 is the multiplicative identity.
      sample:             %               ++ sample yields a value of type %
      one?: % -> Boolean                  ++ one?(x) tests if x is equal to 1.
      **: (%,NonNegativeInteger) -> %     ++ x**n returns the repeated product
                                          ++ of x n times, i.e. exponentiation.
      recip: % -> Union(%,"failed")
          ++ recip(x) tries to compute the multiplicative inverse for x
          ++ or "failed" if it cannot find the inverse.
    add
      import RepeatedSquaring(%)
      one? x == x = 1
      sample() == 1
      recip x ==
       one? x => x
       "failed"
      x:% ** n:NonNegativeInteger ==
         zero? n => 1
         expt(x,n pretend PositiveInteger)

@

\section{category OAGROUP OrderedAbelianGroup}
<<category OAGROUP OrderedAbelianGroup>>=
)abbrev category OAGROUP OrderedAbelianGroup
++ Author:
++ Date Created:
++ Date Last Updated: March 10, 2011
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered sets which are also abelian groups, such that the addition preserves
++ the ordering.

OrderedAbelianGroup(): Category ==
    Join(OrderedCancellationAbelianMonoid, AbelianGroup) with
      negative?: % -> Boolean
        ++ \spad{negative?(x)} holds when \spad{x} is less than \spad{0}.
      sign: % -> Integer
        ++ \spad{sign(x)} is \spad{1} if \spad{x} is positive,
        ++ \spad{-1} if \spad{x} is negative, and \spad{0} otherwise.
      abs: % -> %
        ++ \spad{abs(x)} returns the absolute value of \spad{x}.
  add
    negative? x == x < 0
    sign x ==
      positive? x => 1
      negative? x => -1
      0
    abs x ==
      positive? x => x
      negative? x => -x
      0
@

\section{category OAMON OrderedAbelianMonoid}
<<category OAMON OrderedAbelianMonoid>>=
)abbrev category OAMON OrderedAbelianMonoid
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered sets which are also abelian monoids, such that the addition
++ preserves the ordering.

OrderedAbelianMonoid(): Category ==
    Join(OrderedAbelianSemiGroup, AbelianMonoid) with
      positive?: % -> Boolean
        ++ \spad{positive?(x)} holds when \spad{x} is greater
        ++ than \spad{0}.
  add    
    positive? x == 0 < x

@
\section{category OAMONS OrderedAbelianMonoidSup}
<<category OAMONS OrderedAbelianMonoidSup>>=
)abbrev category OAMONS OrderedAbelianMonoidSup
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This domain is an OrderedAbelianMonoid with a \spadfun{sup} operation added.
++ The purpose of the \spadfun{sup} operator in this domain is to act as a supremum
++ with respect to the partial order imposed by \spadop{-}, rather than with respect to
++ the total \spad{>} order (since that is "max").
++
++ Axioms:
++   \spad{sup(a,b)-a \~~= "failed"}
++   \spad{sup(a,b)-b \~~= "failed"}
++   \spad{x-a \~~= "failed" and x-b \~~= "failed" => x >= sup(a,b)}

OrderedAbelianMonoidSup(): Category == OrderedCancellationAbelianMonoid with
    --operation
      sup: (%,%) -> %
        ++ sup(x,y) returns the least element from which both
        ++ x and y can be subtracted.

@
\section{category OASGP OrderedAbelianSemiGroup}
<<category OASGP OrderedAbelianSemiGroup>>=
)abbrev category OASGP OrderedAbelianSemiGroup
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered sets which are also abelian semigroups, such that the addition
++ preserves the ordering.
++   \spad{ x < y => x+z < y+z}

OrderedAbelianSemiGroup(): Category == Join(OrderedSet, AbelianSemiGroup)

@

\section{The Ordered Semigroup Category}
<<category OSGROUP OrderedSemiGroup>>=
)abbrev category OSGROUP OrderedSemiGroup
++ Author: Gabriel Dos Reis
++ Date Create May 25, 2008
++ Date Last Updated: May 25, 2008
++ Description:  Semigroups with compatible ordering.
OrderedSemiGroup(): Category == Join(OrderedSet, SemiGroup)
@

\section{category OCAMON OrderedCancellationAbelianMonoid}
<<category OCAMON OrderedCancellationAbelianMonoid>>=
)abbrev category OCAMON OrderedCancellationAbelianMonoid
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered sets which are also abelian cancellation monoids, such that the addition
++ preserves the ordering.

OrderedCancellationAbelianMonoid(): Category ==
        Join(OrderedAbelianMonoid, CancellationAbelianMonoid)

@
\section{category ORDFIN OrderedFinite}
<<category ORDFIN OrderedFinite>>=
)abbrev category ORDFIN OrderedFinite
++ Author:
++ Date Created:
++ Date Last Updated: December 27, 2008
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered finite sets.

OrderedFinite(): Category == Join(OrderedSet, Finite) with
     min: % ++ \spad{min} is the minimum value of %.
     max: % ++ \spad{max} is the maximum value of %.

@
\section{category OINTDOM OrderedIntegralDomain}
<<category OINTDOM OrderedIntegralDomain>>=
)abbrev category OINTDOM OrderedIntegralDomain
++ Author: JH Davenport (after L Gonzalez-Vega)
++ Date Created: 30.1.96
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Description:
++ The category of ordered commutative integral domains, where ordering
++ and the arithmetic operations are compatible
++

OrderedIntegralDomain(): Category ==
  Join(IntegralDomain, OrderedRing) 

@

\section{category ORDMON OrderedMonoid}
<<category ORDMON OrderedMonoid>>=
)abbrev category ORDMON OrderedMonoid
++ Author:
++ Date Created:
++ Date Last Updated: May 28, 2008
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered sets which are also monoids, such that multiplication
++ preserves the ordering.
++
++ Axioms:
++   \spad{x < y => x*z < y*z}
++   \spad{x < y => z*x < z*y}

OrderedMonoid(): Category == Join(OrderedSemiGroup, Monoid)

@
\section{category ORDRING OrderedRing}
<<category ORDRING OrderedRing>>=
)abbrev category ORDRING OrderedRing
++ Author:
++ Date Created:
++ Date Last Updated: March 10, 2011
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Ordered sets which are also rings, that is, domains where the ring
++ operations are compatible with the ordering.
++
++ Axiom:
++   \spad{0<a and b<c => ab< ac}

OrderedRing(): Category ==
  Join(OrderedAbelianGroup,CharacteristicZero,Monoid)

@

\section{category ORDSET OrderedSet}

<<category ORDSET OrderedSet>>=
import Boolean
)abbrev category ORDSET OrderedSet
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The class of totally ordered sets, that is, sets such that for each pair of elements \spad{(a,b)}
++ exactly one of the following relations holds \spad{a<b or a=b or b<a}
++ and the relation is transitive, i.e.  \spad{a<b and b<c => a<c}.

OrderedSet(): Category == Join(SetCategory,OrderedType) 

@

\section{Partial Differential Domain}

<<category PDDOM PartialDifferentialDomain>>=
)abbrev category PDDOM PartialDifferentialDomain
++ Author: Gabriel Dos Reis
++ Date Created: June 16, 2010
++ Date Last Modified: June 16, 2010
++ Description:
++   This category captures the interface of domains with a distinguished
++   operation named \spad{differentiate} for partial differentiation with
++   respect to some domain of variables.
++ See Also:
++   DifferentialDomain, PartialDifferentialSpace
PartialDifferentialDomain(T: Type, S: Type): Category == Type with
    differentiate: (%,S) -> T
      ++ \spad{differentiate(x,v)} computes the partial derivative
      ++ of \spad{x} with respect to \spad{v}.
    D: (%,S) -> T
      ++ \spad{D(x,v)} is a shorthand for \spad{differentiate(x,v)}
  add
    D(x,v) ==
      differentiate(x,v)

@

\section{Partial Differential Space}

<<category PDSPC PartialDifferentialSpace>>=
)abbrev category PDSPC PartialDifferentialSpace
++ Author: Gabriel Dos Reis
++ Date Created: June 16, 2010
++ Date Last Modified: June 16, 2010
++ Description:
++   This category captures the interface of domains stable by partial
++   differentiation with respect to variables from some domain.
++ See Also:
++   PartialDifferentialDomain
PartialDifferentialSpace(S: BasicType): Category ==
    PartialDifferentialDomain(%,S) with
      differentiate: (%,List S) -> %
        ++ \spad{differentiate(x,[s1,...sn])} computes successive
        ++ partial derivatives, i.e.
        ++ \spad{differentiate(...differentiate(x, s1)..., sn)}.
      differentiate: (%,S,NonNegativeInteger) -> %
        ++ \spad{differentiate(x,s,n)} computes multiple partial
        ++ derivatives, i.e. \spad{n}-th derivative of \spad{x}
        ++ with respect to \spad{s}.
      differentiate: (%,List S,List NonNegativeInteger) -> %
        ++ \spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes
        ++ multiple partial derivatives, i.e.
      D: (%,List S) -> %
        ++ \spad{D(x,[s1,...sn])} is a shorthand for
        ++ \spad{differentiate(x,[s1,...sn])}.
      D: (%,S,NonNegativeInteger) -> %
        ++ \spad{D(x,s,n)} is a shorthand for \spad{differentiate(x,s,n)}.
      D: (%,List S,List NonNegativeInteger) -> %
        ++ \spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for
        ++ \spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.
  add
    differentiate(r: %,l: List S) ==
      for s in l repeat r := differentiate(r, s)
      r

    differentiate(r: %,s: S,n: NonNegativeInteger) ==
      for i in 1..n repeat r := differentiate(r, s)
      r

    differentiate(r: %,ls: List S,ln: List NonNegativeInteger) ==
      for s in ls for n in ln repeat r := differentiate(r, s, n)
      r

    D(r: %,v: S) ==
      differentiate(r,v)

    D(r: %,lv: List S) ==
      differentiate(r,lv)
    D(r: %,v: S,n: NonNegativeInteger) ==
      differentiate(r,v,n)
    D(r: %,lv: List S,ln: List NonNegativeInteger) ==
      differentiate(r, lv, ln)

@

\section{category PDRING PartialDifferentialRing}
<<category PDRING PartialDifferentialRing>>=
)abbrev category PDRING PartialDifferentialRing
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A partial differential ring with differentiations indexed by a parameter type S.
++
++ Axioms:
++   \spad{differentiate(x+y,e) = differentiate(x,e)+differentiate(y,e)}
++   \spad{differentiate(x*y,e) = x*differentiate(y,e) + differentiate(x,e)*y}

PartialDifferentialRing(S: BasicType): Category ==
  Join(Ring,PartialDifferentialSpace S)

@

\section{Partial Differential Module}

<<category PDMOD PartialDifferentialModule>>=
)abbrev category PDMOD PartialDifferentialModule
++ Author: Gabriel Dos Reis
++ Date Created: June 16, 2010
++ Date Last Updated: June 18, 2010
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++   A partial differential R-module with differentiations
++   indexed by a parameter type S.
++
++ Axioms:
++   \spad{differentiate(x+y,e) = differentiate(x,e)+differentiate(y,e)}
++   \spad{differentiate(r*x,e) = r*differentiate(x,e) + differentiate(r,e)*x}
++   \spad{differentiate(x*r,e) = x*differentiate(r,e) + differentiate(x,e)*r}

PartialDifferentialModule(R: Ring,S: BasicType): Category ==
  Join(BiModule(R,R),PartialDifferentialSpace S) with
     if R has CommutativeRing then Module R

@


\section{category PFECAT PolynomialFactorizationExplicit}
<<category PFECAT PolynomialFactorizationExplicit>>=
)abbrev category PFECAT PolynomialFactorizationExplicit
++ Author: James Davenport
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This is the category of domains that know "enough" about
++ themselves in order to factor univariate polynomials over themselves.
++ This will be used in future releases for supporting factorization
++ over finitely generated coefficient fields, it is not yet available
++ in the current release of axiom.

PolynomialFactorizationExplicit(): Category == Definition where
  P ==> SparseUnivariatePolynomial %
  Definition ==>
    UniqueFactorizationDomain with
    -- operations
       squareFreePolynomial: P -> Factored(P)
              ++ squareFreePolynomial(p) returns the
              ++ square-free factorization of the
              ++ univariate polynomial p.
       factorPolynomial: P -> Factored(P)
              ++ factorPolynomial(p) returns the factorization
              ++ into irreducibles of the univariate polynomial p.
       factorSquareFreePolynomial: P -> Factored(P)
              ++ factorSquareFreePolynomial(p) factors the
              ++ univariate polynomial p into irreducibles
              ++ where p is known to be square free
              ++ and primitive with respect to its main variable.
       gcdPolynomial: (P, P) -> P
              ++ gcdPolynomial(p,q) returns the gcd of the univariate
              ++ polynomials p qnd q.
              -- defaults to Euclidean, but should be implemented via
              -- modular or p-adic methods.
       solveLinearPolynomialEquation: (List P, P) -> Union(List P,"failed")
              ++ solveLinearPolynomialEquation([f1, ..., fn], g)
              ++ (where the fi are relatively prime to each other)
              ++ returns a list of ai such that
              ++ \spad{g/prod fi = sum ai/fi}
              ++ or returns "failed" if no such list of ai's exists.
       if % has CharacteristicNonZero then
         conditionP: Matrix % -> Union(Vector %,"failed")
              ++ conditionP(m) returns a vector of elements, not all zero,
              ++ whose \spad{p}-th powers (p is the characteristic of the domain)
              ++ are a solution of the homogenous linear system represented
              ++ by m, or "failed" is there is no such vector.
         charthRoot: % -> Maybe %
              ++ charthRoot(r) returns the \spad{p}-th root of r, or
              ++ \spad{nothing} if none exists in the domain.
              -- this is a special case of conditionP, but often the one we want
      add
        gcdPolynomial(f,g) ==
           zero? f => g
           zero? g => f
           cf:=content f
           if not one? cf then f:=(f exquo cf)::P
           cg:=content g
           if not one? cg then g:=(g exquo cg)::P
           ans:=subResultantGcd(f,g)$P
           gcd(cf,cg)*(ans exquo content ans)::P
        if % has CharacteristicNonZero then
          charthRoot f ==
             -- to take p'th root of f, solve the system X-fY=0,
             -- so solution is [x,y]
             -- with x^p=X and y^p=Y, then (x/y)^p = f
             zero? f => just 0
             m:Matrix % := matrix [[1,-f]]
             ans:= conditionP m
             ans case "failed" => nothing
             r := (ans.1) exquo (ans.2)
             r case "failed" => nothing
             just r
        if % has Field then
          solveLinearPolynomialEquation(lf,g) ==
            multiEuclidean(lf,g)$P
        else solveLinearPolynomialEquation(lf,g) ==
               LPE ==> LinearPolynomialEquationByFractions %
               solveLinearPolynomialEquationByFractions(lf,g)$LPE

@
\section{category PID PrincipalIdealDomain}
<<category PID PrincipalIdealDomain>>=
)abbrev category PID PrincipalIdealDomain
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of constructive principal ideal domains, i.e.
++ where a single generator can be constructively found for
++ any ideal given by a finite set of generators.
++ Note that this constructive definition only implies that
++ finitely generated ideals are principal. It is not clear
++ what we would mean by an infinitely generated ideal.

PrincipalIdealDomain(): Category == GcdDomain with
    --operations
      principalIdeal: List % -> Record(coef:List %,generator:%)
         ++ principalIdeal([f1,...,fn]) returns a record whose
         ++ generator component is a generator of the ideal
         ++ generated by \spad{[f1,...,fn]} whose coef component satisfies
         ++ \spad{generator = sum (input.i * coef.i)}
      expressIdealMember: (List %,%) -> Maybe List %
         ++ \spad{expressIdealMember([f1,...,fn],h)} returns a representation
         ++ of h as a linear combination of the fi or \spad{nothing} if h
         ++ is not in the ideal generated by the fi.

@
\section{category RMODULE RightModule}
<<category RMODULE RightModule>>=
)abbrev category RMODULE RightModule
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of right modules over an rng (ring not necessarily with unit).
++ This is an abelian group which supports right multiplation by elements of
++ the rng.
++
++ Axioms:
++   \spad{ x*(a*b) = (x*a)*b }
++   \spad{ x*(a+b) = (x*a)+(x*b) }
++   \spad{ (x+y)*x = (x*a)+(y*a) }
RightModule(R:Rng):Category == Join(AbelianGroup, RightLinearSet R)

@

\section{category SRING SemiRing}
<<category SRING SemiRing>>=
)abbrev category SRING SemiRing
++ Author: Gabriel Dos Reis
++ Date Created: March 7, 2011
++ Date Last Modified: March 7, 2011
++ Description:
++   The category of all semiring structures, e.g. triples (D,+,*)
++   such that (D,+) is an Abelian monoid and (D,*) is a monoid
++   with the following laws:
++ Axioms:
++    a * (b + c) = (a * b) + (a * c)
++    (b + c) * a = (b * a) + (c * a)
++    0 * a = 0
++    a * 0 = 0
SemiRing(): Category == Join(AbelianMonoid,Monoid)
@

\section{category RING Ring}
<<category RING Ring>>=
)abbrev category RING Ring
++ Author:
++ Date Created:
++ Date Last Updated: February 14, 2012
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of rings with unity, always associative, but
++ not necessarily commutative.

Ring(): Category == Join(Rng,SemiRing,LeftModule(%),CoercibleFrom Integer) with
    --operations
      characteristic: NonNegativeInteger
        ++ characteristic() returns the characteristic of the ring
        ++ this is the smallest positive integer n such that
        ++ \spad{n*x=0} for all x in the ring, or zero if no such n
        ++ exists.
        --We can not make this a constant, since some domains are mutable
   add
      n:Integer
      coerce(n) == n * 1$%

@

\section{Dioid category}

<<category DIOID Dioid>>=
)abbrev category DIOID Dioid
++ Author: Gabriel Dos Reis
++ Date Created: February 14, 2012
++ Date Last Modified: February 14, 2012
++ Description:
++   Dioid is the class of semirings where the addition operation
++   induces a canonical order relation.
Dioid(): Category == Join(OrderedAbelianMonoid,SemiRing)

@

\section{category RNG Rng}
<<category RNG Rng>>=
)abbrev category RNG Rng
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ The category of associative rings, not necessarily commutative, and not
++ necessarily with a 1. This is a combination of an abelian group
++ and a semigroup, with multiplication distributing over addition.
++
++ Axioms:
++   \spad{ x*(y+z) = x*y + x*z}
++   \spad{ (x+y)*z = x*z + y*z }
++
++ Conditional attributes:
++   \spadnoZeroDivisors\tab{25}\spad{  ab = 0 => a=0 or b=0}
Rng(): Category == Join(AbelianGroup,SemiGroup) with
         annihilate?: (%,%) -> Boolean
           ++ \spad{annihilate?(x,y)} holds when the product
           ++ of \spad{x} and \spad{y} is \spad{0}.
       add
         annihilate?(x,y) == zero?(x * y)

@ 

\section{category SGROUP SemiGroup}

<<category SGROUP SemiGroup>>=
import PositiveInteger
)abbrev category SGROUP SemiGroup
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ the class of all multiplicative semigroups, i.e. a set
++ with an associative operation \spadop{*}.
++
++ Axioms:
++    \spad{associative("*":(%,%)->%)}\tab{30}\spad{ (x*y)*z = x*(y*z)}
++
++ Conditional attributes:
++    \spad{commutative("*":(%,%)->%)}\tab{30}\spad{ x*y = y*x }
SemiGroup(): Category == SetCategory with
    --operations
      *: (%,%) -> %                  ++ x*y returns the product of x and y.
      **: (%,PositiveInteger) -> %   ++ x**n returns the repeated product
                                     ++ of x n times, i.e. exponentiation.
    add
      import RepeatedSquaring(%)
      x:% ** n:PositiveInteger == expt(x,n)

@
\section{category SETCAT SetCategory}
<<category SETCAT SetCategory>>=
)abbrev category SETCAT SetCategory
++ Author:
++ Date Created:
++ Date Last Updated:
++   09/09/92   RSS   added latex and hash
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ \spadtype{SetCategory} is the basic category for describing a collection
++ of elements with \spadop{=} (equality) and \spadfun{coerce} to output form.
++
++ Conditional Attributes:
++    canonical\tab{15}data structure equality is the same as \spadop{=}
SetCategory(): Category == Join(BasicType,CoercibleTo OutputForm) with
    --operations
      hash: % -> SingleInteger  ++ hash(s) calculates a hash code for s.
      latex: % -> String       ++ latex(s) returns a LaTeX-printable output
                               ++ representation of s.
  add
      import %hash: % -> SingleInteger from Foreign Builtin

      hash(s : %):  SingleInteger == %hash s
      latex(s : %): String       == "\mbox{\bf Unimplemented}"
@

\section{category STEP StepThrough}
<<category STEP StepThrough>>=
)abbrev category STEP StepThrough
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A class of objects which can be 'stepped through'.
++ Repeated applications of \spadfun{nextItem} is guaranteed never to
++ return duplicate items and only return "failed" after exhausting
++ all elements of the domain.
++ This assumes that the sequence starts with \spad{init()}.
++ For non-fiinite domains, repeated application
++ of \spadfun{nextItem} is not required to reach all possible domain elements
++ starting from any initial element.
++
StepThrough(): Category == SetCategory with
    --operations
      init:             %
        ++ init() chooses an initial object for stepping.
      nextItem: % -> Maybe %
        ++ \spad{nextItem(x)} returns the next item, or \spad{failed}
        ++ if domain is exhausted.

@
\section{category UFD UniqueFactorizationDomain}
<<category UFD UniqueFactorizationDomain>>=
)abbrev category UFD UniqueFactorizationDomain
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A constructive unique factorization domain, i.e. where
++ we can constructively factor members into a product of
++ a finite number of irreducible elements.

UniqueFactorizationDomain(): Category == GcdDomain with
    --operations
      prime?: % -> Boolean
            ++ prime?(x) tests if x can never be written as the product of two
            ++ non-units of the ring,
            ++ i.e., x is an irreducible element.
      squareFree    : % -> Factored(%)
            ++ squareFree(x) returns the square-free factorization of x
            ++ i.e. such that the factors are pairwise relatively prime
            ++ and each has multiple prime factors.
      squareFreePart: % -> %
            ++ squareFreePart(x) returns a product of prime factors of
            ++ x each taken with multiplicity one.
      factor: % -> Factored(%)
            ++ factor(x) returns the factorization of x into irreducibles.
 add
  squareFreePart x ==
    unit(s := squareFree x) * _*/[f.factor for f in factors s]

  prime? x == one?(# factorList factor x)

@

\section{category VSPACE VectorSpace}

<<category VSPACE VectorSpace>>=
)abbrev category VSPACE VectorSpace
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ Vector Spaces (not necessarily finite dimensional) over a field.

VectorSpace(S:Field): Category ==  Module(S) with
    /      : (%, S) -> %
      ++ x/y divides the vector x by the scalar y.
    dimension: () -> CardinalNumber
      ++ dimension() returns the dimensionality of the vector space.
  add
    (v:% / s:S):% == inv(s) * v

@

\section{Functorial}

<<category FUNCTOR Functorial>>=
)abbrev category FUNCTOR Functorial
++ Author: Gabriel Dos Reis
++ Date Created: May 19, 2013.
++ Date Last Modified: May 19, 2013.
++ Description:
++   This category describes the class of structural objects that
++   behave functorially in distinguished class of components.
Functorial(S: Type): Category == Type with
    map: (S -> S, %) -> %
      ++ \spad{map(f,x)} returns an object with similar shape and
      ++ structure as \spad{x}, where all \spad{S}-items \spad{s}
      ++ in \spad{x} have been replacement elementwise by \spad{f s}.
@


\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2013, Gabriel Dos Reis.
--All rights reversed.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<category FUNCTOR Functorial>>
<<category BINOPC BinaryOperatorCategory>>
<<domain BINOP BinaryOperation>>
<<category COMOPC CommutativeOperatorCategory>>
<<domain COMOP CommutativeOperation>>
<<category IDEMOPC IdempotentOperatorCategory>>
<<category SGPOPC SemiGroupOperatorCategory>>
<<domain SGPOP SemiGroupOperation>>
<<category MONOPC MonoidOperatorCategory>>
<<domain MONOP MonoidOperation>>

<<category BASTYPE BasicType>>
<<category ORDTYPE OrderedType>>
<<domain ORDSTRCT OrderedStructure>>
<<category SETCAT SetCategory>>
<<category STEP StepThrough>>
<<category SGROUP SemiGroup>>
<<category MONOID Monoid>>
<<category GROUP Group>>
<<category ABELSG AbelianSemiGroup>>
<<category ABELMON AbelianMonoid>>
<<category CABMON CancellationAbelianMonoid>>
<<category ABELGRP AbelianGroup>>
<<category RNG Rng>>
<<category LLINSET LeftLinearSet>>
<<category RLINSET RightLinearSet>>
<<category LINSET LinearSet>>
<<category LMODULE LeftModule>>
<<category RMODULE RightModule>>
<<category SRING SemiRing>>
<<category RING Ring>>
<<category DIOID Dioid>>
<<category BMODULE BiModule>>
<<category ENTIRER EntireRing>>
<<category CHARZ CharacteristicZero>>
<<category CHARNZ CharacteristicNonZero>>
<<category COMRING CommutativeRing>>
<<category MODULE Module>>
<<category ALGEBRA Algebra>>
<<category LINEXP LinearlyExplicitRingOver>>
<<category FLINEXP FullyLinearlyExplicitRingOver>>
<<category INTDOM IntegralDomain>>
<<category GCDDOM GcdDomain>>
<<category UFD UniqueFactorizationDomain>>
<<category PFECAT PolynomialFactorizationExplicit>>
<<category PID PrincipalIdealDomain>>
<<category EUCDOM EuclideanDomain>>
<<category DIVRING DivisionRing>>
<<category FIELD Field>>
<<category FINITE Finite>>
<<category VSPACE VectorSpace>>
<<category ORDSET OrderedSet>>
<<category ORDFIN OrderedFinite>>
<<category OSGROUP OrderedSemiGroup>>
<<category ORDMON OrderedMonoid>>
<<category OASGP OrderedAbelianSemiGroup>>
<<category OAMON OrderedAbelianMonoid>>
<<category OCAMON OrderedCancellationAbelianMonoid>>
<<category OAGROUP OrderedAbelianGroup>>
<<category ORDRING OrderedRing>>
<<category OINTDOM OrderedIntegralDomain>>
<<category OAMONS OrderedAbelianMonoidSup>>
<<category DIFFDOM DifferentialDomain>>
<<category DIFFSPC DifferentialSpace>>
<<category DIFRING DifferentialRing>>
<<category DIFFMOD DifferentialModule>>
<<category DMEXT DifferentialModuleExtension>>
<<category PDDOM PartialDifferentialDomain>>
<<category PDSPC PartialDifferentialSpace>>
<<category PDRING PartialDifferentialRing>>
<<category PDMOD PartialDifferentialModule>>
<<category DIFEXT DifferentialExtension>>
<<category DSEXT DifferentialSpaceExtension>>
@

\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}