aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/algext.spad.pamphlet
blob: c0e80cdaacda285e98f29f731a3cf6f5fd0a2950 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{src/algebra algext.spad}
\author{Barry Trager, Manuel Bronstein, Clifton Williamson}
\maketitle

\begin{abstract}
\end{abstract}
\tableofcontents

\eject

\section{domain SAE SimpleAlgebraicExtension}

<<domain SAE SimpleAlgebraicExtension>>=
import UnivariatePolynomialCategory
import MonogenicAlgebra
)abbrev domain SAE SimpleAlgebraicExtension
++ Algebraic extension of a ring by a single polynomial
++ Author: Barry Trager, Manuel Bronstein, Clifton Williamson
++ Date Created: 1986
++ Date Last Updated: 9 May 1994
++ Description:
++ Domain which represents simple algebraic extensions of arbitrary
++ rings. The first argument to the domain, R, is the underlying ring,
++ the second argument is a domain of univariate polynomials over K,
++ while the last argument specifies the defining minimal polynomial.
++ The elements of the domain are canonically represented as polynomials
++ of degree less than that of the minimal polynomial with coefficients
++ in R. The second argument is both the type of the third argument and
++ the underlying representation used by \spadtype{SAE} itself.
++ Keywords: ring, algebraic, extension
++ Example: )r SAE INPUT

SimpleAlgebraicExtension(R:CommutativeRing,
 UP:UnivariatePolynomialCategory R, M:UP): MonogenicAlgebra(R, UP) == add
    --sqFr(pb): FactorS(Poly) from UnivPolySquareFree(Poly)

    --degree(M) > 0 and M must be monic if R is not a field.
    if (r := recip leadingCoefficient M) case "failed" then
                                    error "Modulus cannot be made monic"
    Rep := UP
    x,y :$
    c: R

    mkDisc   : Boolean -> Void
    mkDiscMat: Boolean -> Void

    M   := r::R * M
    d   := degree M
    d1  := subtractIfCan(d,1)::NonNegativeInteger
    discmat:Matrix(R) := zero(d, d)
    nodiscmat?:Reference(Boolean) := ref true
    disc:Reference(R) := ref 0
    nodisc?:Reference(Boolean) := ref true
    bsis := [monomial(1, i)$Rep for i in 0..d1]$Vector(Rep)

    if R has Finite then
         size == size()$R ** d
         random == represents([random()$R for i in 0..d1])
    0 == 0$Rep
    1 == 1$Rep
    c * x == c *$Rep x
    n:Integer * x == n *$Rep x
    coerce(n:Integer):$   == coerce(n)$Rep
    coerce(c) == monomial(c,0)$Rep
    coerce(x):OutputForm == coerce(x)$Rep
    lift(x) == x pretend Rep
    reduce(p:UP):$ == (monicDivide(p,M)$Rep).remainder
    x = y == x =$Rep y
    x + y == x +$Rep y
    - x == -$Rep x
    x * y == reduce((x *$Rep y) pretend UP)
    coordinates(x) == [coefficient(lift(x),i) for i in 0..d1]
    represents(vect) == +/[monomial(vect.(i+1),i) for i in 0..d1]
    definingPolynomial()  == M
    characteristic        == characteristic$R
    rank()                == d::PositiveInteger
    basis()               == copy(bsis@Vector(Rep) pretend Vector($))
    --!! I inserted 'copy' in the definition of 'basis'  -- cjw 7/19/91

    if R has Field then
      minimalPolynomial x == squareFreePart characteristicPolynomial x

    if R has Field then
      coordinates(x:$,bas: Vector $) ==
        (m := inverse transpose coordinates bas) case "failed" =>
          error "coordinates: second argument must be a basis"
        (m :: Matrix R) * coordinates(x)

    else if R has IntegralDomain then
      coordinates(x:$,bas: Vector $) ==
        -- we work over the quotient field of R to invert a matrix
        qf := Fraction R
        imatqf := InnerMatrixQuotientFieldFunctions(R,Vector R,Vector R,_
                   Matrix R,qf,Vector qf,Vector qf,Matrix qf)
        mat := transpose coordinates bas
        (m := inverse(mat)$imatqf) case "failed" =>
          error "coordinates: second argument must be a basis"
        coordsQF := map(#1 :: qf,coordinates x)$VectorFunctions2(R,qf)
        -- here are the coordinates as elements of the quotient field:
        vecQF := (m :: Matrix qf) * coordsQF
        vec : Vector R := new(d,0)
        for i in 1..d repeat
          xi := qelt(vecQF,i)
          denom(xi) = 1 => qsetelt!(vec,i,numer xi)
          error "coordinates: coordinates are not integral over ground ring"
        vec

    reducedSystem(m:Matrix $):Matrix(R) ==
      reducedSystem(map(lift, m)$MatrixCategoryFunctions2($, Vector $,
               Vector $, Matrix $, UP, Vector UP, Vector UP, Matrix UP))

    reducedSystem(m:Matrix $, v:Vector $):Record(mat:Matrix R,vec:Vector R) ==
      reducedSystem(map(lift, m)$MatrixCategoryFunctions2($, Vector $,
               Vector $, Matrix $, UP, Vector UP, Vector UP, Matrix UP),
                                    map(lift, v)$VectorFunctions2($, UP))

    discriminant() ==
      if nodisc?() then mkDisc false
      disc()

    mkDisc b ==
      nodisc?() := b
      disc() := discriminant M
      void()

    traceMatrix() ==
      if nodiscmat?() then mkDiscMat false
      discmat

    mkDiscMat b ==
      nodiscmat?() := b
      mr := minRowIndex discmat; mc := minColIndex discmat
      for i in 0..d1 repeat
        for j in 0..d1 repeat
          qsetelt!(discmat,mr + i,mc + j,trace reduce monomial(1,i + j))
      void()

    trace x ==          --this could be coded perhaps more efficiently
      xn := x;  ans := coefficient(lift xn, 0)
      for n in 1..d1 repeat
        (xn := generator() * xn;  ans := coefficient(lift xn, n) + ans)
      ans

    if R has Finite then
       index k ==
         i:Integer := k rem size()
         p:Integer := size()$R
         ans:$ := 0
         for j in 0.. while i > 0 repeat
           h := i rem p
           -- index(p) = 0$R
           if h ~= 0 then
             -- here was a bug: "index" instead of
             -- "coerce", otherwise it wouldn't work for
             -- Rings R where "coerce: I-> R" is not surjective
             a := index(h :: PositiveInteger)$R
             ans := ans + reduce monomial(a, j)
           i := i quo p
         ans
       lookup(z : $) : PositiveInteger ==
         -- z = index lookup z, n = lookup index n
         -- the answer is merely the Horner evaluation of the
         -- representation with the size of R (as integers).
         zero?(z) => size()$% pretend PositiveInteger
         p  :            Integer := size()$R
         co :            Integer := lookup(leadingCoefficient z)$R
         n  : NonNegativeInteger := degree(z)
         while not zero?(z := reductum z) repeat
          co := co * p ** ((n - (n := degree z)) pretend
            NonNegativeInteger) + lookup(leadingCoefficient z)$R
         n = 0 => co pretend PositiveInteger
         (co * p ** n) pretend PositiveInteger

--
--   KA:=BasicPolynomialFunctions(Poly)
--   minPoly(x) ==
--      ffe:= SqFr(resultant(M::KA, KA.var - lift(x)::KA)).fs.first
--      ffe.flag = "SQFR" => ffe.f
--      mdeg:= (degree(ffe.f) // K.characteristic)::Integer
--      mat:= Zero()::Matrix<mdeg+1,deg+mdeg+1>(K)
--      xi:=L.1;  setelt(mat,1,1,K.1);  setelt(mat,1,(deg+1),K.1)
--      for i in 1..mdeg repeat
--         xi:= x * xi;  xp:= lift(xi)
--         while xp ~= KA.0 repeat
--            setelt(mat,(mdeg+1),(degree(xp)+1),LeadingCoef(xp))
--            xp:=reductum(xp)
--         setelt(mat,(mdeg+1),(deg+i+1),K.1)
--         EchelonLastRow(mat)
--         if and/(elt(mat,(i+1),j) = K.0 for j in 1..deg)
--           then return unitNormal(+/(elt(mat,(i+1),(deg+j+1))*(B::KA)**j
--                                       for j in 0..i)).a
--      ffe.f

@

\section{License}

<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2010, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain SAE SimpleAlgebraicExtension>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}