1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
|
%% Oh Emacs, this is a -*- sh -*- script, despite appearance.
\documentclass[12pt]{article}
\usepackage{axiom}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{fancyvrb}
\usepackage{pslatex}
\usepackage{url}
\newcommand{\email}[1]{\url{#1}}
\CustomVerbatimEnvironment{chunk}{Verbatim}{frame=none,fontsize=\small}
\def\nwendcode{\endtrivlist \endgroup}
\let\nwdocspar=\par
\let\nowebsize=\small
\title{The Toplevel \File{configure.ac} Pamphlet}
\author{Gabriel Dos~Reis}
\begin{document}
\maketitle
\begin{abstract}
This pamphlet details the configuration process of setting up
\Tool{OpenAxiom} for build from source codes.
It also explains general dependencies on external tools.
The configuration process scrutinizes the build, host, and target
environments, and finally instantiates \File{Makefile}s for building
\Tool{OpenAxiom} interpreter, compiler, libraries, and auxiliary tools
where appropriate.
\end{abstract}
\section{Introduction}
\label{sec:intro}
This is the top-level \Tool{Autoconf} description that sets up the
minimum environment for building \Tool{OpenAxiom}. This effort
strives for describing the build machinery at a sufficiently abstract
level that
enables interoperability with existing conventional frameworks, \eg{}
the GNU build framework.
The task is compounded by the fact that the existing \Tool{OpenAxiom} system
is complex and very poorly documented, with blatantly conflicting or
questionable codes.
The \Tool{OpenAxiom} system is written for the most part in Lisp, or
thereof. That in itself is a great source of portability
problems\footnote{even after half a century of existence},
let alone issues related to insulation from mainstream
development tools, dependence on particular Lisp implementation details, etc.
A tiny part of it, mainly the interface with host operating system, is
written in the C programming language. That does not improve on the
portability problems. Fortunately, there are well-supported,
widely used, widely available, well tested tools supporting
C-derived development environments across platforms. The GNU
\Tool{Autotools} being one of them. For the moment, we only make use of
the \Tool{Autoconf} component. This build machinery does not
use \Tool{Automake} and \Tool{Libtool}. People intending to modify
this part of the build machinery are expected to be familiar with
\Tool{Autotconf}.
The \File{Makefile} pamphlets that compose the build machinery are
written in a way that abstracts platform idiosyncracies into
parameters. The purpose of the \File{configure.ac} script is to
find values for those parameters, on a given platform, necessary to
instantiate the \File{Makefile}s, and therefore to set up a concrete
build machinery. And that task must be accomplished portably.
\section{Generalities on build instantiations}
\subsection{Two actors}
The instantiation of the abstract build machinery description requires
that we gather information from two platforms:
\begin{enumerate}
\item the \emph{build platform}, and
\item the \emph{host platform}.
\end{enumerate}
The build platform is where we build the system, \eg{} where
the \File{configure} script is executed. The host platform
is where \Tool{OpenAxiom} will run. Note that in full generality, there is
a third platform: the \emph{target platform}. It is the plaform for which
we are building the system.
For typical build instantiations, those three platforms are the same: we
call that a \emph{native build instantiation} or just \emph{native build}.
The OpenAxiom system only support native build at the moment, due to its
dependence on \Tool{GCL} which supports only native build.
To facilitate the porting of programs across platforms, the GNU build
system has standardized on designation of platforms, called
\emph{configuration names}. A configuration name used to be
made of three parts\footnote{hence the term \emph{canonical triplet} in
earlier versions of \Tool{Autoconf}}:
\textsl{cpu--vendor--os}. Examples are
[[i686-pc-linux-gnu]], or [[sparc-sun-solaris2.8]].
The \textsl{cpu}
part usually designates the type of processor used on the platform.
Examples are [[i686]], or [[sparc]], or [[x86_64]].
The \textsl{vendor} part formally designates the manufacturer of
the platform. In many cases it is simply [[unknown]]. However,
in specific cases, you can see the name of a workstation vendor such
as [[sun]], or [[pc]] for an IBM PC compatible system.
The \textsl{os} part can be either \textsl{system} (such as [[solaris2.8]])
or \textsl{kernel--system} (such as [[linux-gnu]]).
Here is how we get the canonical names for the above three platforms:
<<host build target platfoms>>=
AC_CANONICAL_SYSTEM
open_axiom_installdir=$libdir/open-axiom/$target/$PACKAGE_VERSION
AC_SUBST(open_axiom_installdir)
@
After that call, the configuration names of the three platforms
are available in the shell variables [[build]], [[host]], and [[target]].
\subsubsection{Cross build}
As we said earlier, a native build instantiation is one where all
[[build]], [[host]], and [[target]] have the same value. However,
when porting programs to other platforms, it is not always possible
to do a native build --- either because all the tools are not
available on that machine, or because it is much more convenient to
build the software on a faster machine. Both situations are quite
common.
Those considerations bring us to the notion of cross build
instantiation (also called cross compilation).
We say that the build instantiation is a \emph{cross build} when
the build platform is different from the target platform; \eg{}, when
[[build]] $\neq$ [[target]].
For the moment, the \Tool{OpenAxiom} base source code is written
in a way that does not support cross build. However, we do
want to make cross build possible; consequently we issue
a warning when we detect attempt at cross build:
<<host build target platfoms>>=
if test $build != $target; then
AC_MSG_WARN([Cross build is not supported.])
AC_MSG_WARN([Please notify open-axiom-devel@open-axiom.org if you succeed.])
fi
@
Note that we do not stop the configuration process because we do seek
contributions for cross build support.
Note that the shell variable [[cross_compiling]],
set by the \Tool{Autoconf} macro [[AC_PROG_CC]], indicates whether
the C compiler used is a cross compiler.
\subsubsection{Canadian cross}
As we said previously, most software don't care about the target
platform. But compilers do. And \Tool{OpenAxiom} does because, among
other things, it uses Lisp and C compilers, and it provides a Spad compiler.
Another type of build instantiation arises when the host platform
is different from the target platform. The resulting compiler
is called a \emph{cross compiler}. Please note the distinction here:
a compiler that is cross compiled with [[host]] $=$ [[target]] is
not a cross compiler; it is a \emph{native compiler}.
A cross compiler is one with [[host]] $\neq$ [[target]].
The type of the compiler should not be confused with the type of the
build instantiation. It perfectly makes sense to have a build
instantiation that cross builds a cross-compiler, \ie{} all three
platforms are different: This is called \emph{Canadian cross}.
The \Tool{OpenAxiom} system does not that support that level of
sophistication yet. Although we could test for Canadian cross build
at this point, we delay that check for when we look for a C compiler.
\subsection{Directories for the build instantiation}
Although \Tool{OpenAxiom} does not support cross build yet, let
alone Canadian cross, we want to make sure that we do not write
the build machinery in a way that actively unsupports
cross build. Consequently, in the build tree, we sequester
tools that we build and use on the build platform,
in sub-directories different from others.
<<host build target platfoms>>=
## Where tools for the build platform are sequestered
axiom_build_sharedir=$axiom_builddir/share
@
\section{Host characteristics}
As mentioned in the introduction, a small part of \Tool{OpenAxiom} is
written in the C programming language. That C runtime support
can be decomposed in three components:
\begin{enumerate}
\item core runtime support,
\item graphics (including HyperDoc), and
\item terminal I/O.
\end{enumerate}
\subsection{Core runtime}
\subsubsection{Signals}
The host platform must be able to handle signals. Although, this is
not strictly necessary, that is the way \Tool{OpenAxiom} source code
is currently written. We ask for a POSIX or ISO C semantics, though
we have a strong preference for POSIX-conformant semantics.
<<C headers and libraries>>=
AC_CHECK_HEADERS([stdint.h inttypes.h])
AC_TYPE_UINT8_T
AC_CHECK_HEADERS([signal.h],
[],
[AC_MSG_ERROR([OpenAxiom needs signal support.])])
AC_CHECK_DECLS([sigaction], [], [],
[#include <signal.h>])
@
\subsubsection{Files and directtories}
Some parts of \Tool{OpenAxiom} manipulate files and directories. They
more or less directly reflect the underlying platform semantics.
For the moment, we require POSIX semantics, though that does not
seem necessary. That restriction should be removed as soon as possible.
<<C headers and libraries>>=
AC_CHECK_HEADERS([sys/stat.h],
[],
[AC_MSG_ERROR([OpenAxiom needs <sys/stat.h>])])
case $host in
*mingw*)
;;
*)
AC_CHECK_HEADERS([dirent.h],
[],
[AC_MSG_ERROR([OpenAxiom needs <dirent.h>])])
;;
esac
AC_CHECK_HEADERS([unistd.h], [],
[AC_MSG_ERROR([OpenAxiom needs <unistd.h>])])
AC_CHECK_DECLS([getuid, geteuid, getgid, getegid], [], [],
[#include <unistd.h>])
AC_CHECK_DECLS([kill], [], [],
[#include <signal.h>])
@
\subsubsection{Sockets}
The host environment must be capable of handling communication through
sockets. This is required for interfacing \Tool{AXIOMsys}
and \Tool{Superman}. Notice that ideally, we should decouple
that interface in such a way that we can still build \Tool{OpenAxiom}
when \Tool{Superman} is not needed or a socket library is not
available.
<<C headers and libraries>>=
case $host in
*mingw*)
AC_CHECK_HEADERS([winsock2.h],
[axiom_host_has_socket=yes],
[])
axiom_c_runtime_extra="-lwsock32"
;;
*)
AC_CHECK_HEADERS([sys/socket.h],
[axiom_host_has_socket=yes],
[])
;;
esac
if test x$axiom_host_has_socket != xyes; then \
AC_MSG_ERROR([OpenAxiom needs suport for sockets.])
fi
## solaris-based systems tend to hide the socket library.
case $host in
*solaris*)
AC_SEARCH_LIBS([accept], [socket],
[axiom_c_runtime_extra="-lsocket"],
[AC_MSG_ERROR([socket library not found])])
;;
*) ;;
esac
AC_SUBST(axiom_c_runtime_extra)
AC_EGREP_CPP([has_af_local],
[#if HAVE_SYS_SOCKET_H
# include <sys/socket.h>
#else
# include <winsock2.h>
#endif
#ifdef AF_LOCAL
has_af_local
#endif
],
[AC_DEFINE([HAVE_AF_LOCAL], [1], [Host has AF_LOCAL])])
AC_EGREP_CPP([has_af_unix],
[#if HAVE_SYS_SOCKET_H
# include <sys/socket.h>
#else
# include <winsock2.h>
#endif
#ifdef AF_UNIX
has_af_unix
#endif
],
[AC_DEFINE([HAVE_AF_UNIX], [1], [Host has AF_UNIX])])
@
\subsection{Terminal I/O}
<<C headers and libraries>>=
AC_CHECK_HEADERS([sys/wait.h])
if test x"$ac_cv_header_sys_wait_h" = xyes; then \
AC_CHECK_DECLS([wait],
[],
[],
[#include <sys/wait.h>])
fi
AC_CHECK_DECLS([fork],
[],
[],
[#include <unistd.h>])
## Does this system have openpty or shall we emulate?
AC_CHECK_HEADERS([sys/ioctl.h pty.h util.h libutil.h termios.h])
AC_CHECK_DECLS([openpty],[],[],
[#if HAVE_PTY_H
# include <pty.h>
#endif
#if HAVE_UTIL_H
# include <util.h>
#endif
#if HAVE_SYS_IOCTL_H
# include <sys/ioctl.h>
#endif
#if HAVE_TERMIOS_H
# include <termios.h>
#endif
#if HAVE_LIBUTIL_H
# include <sys/types.h>
# include <libutil.h>
#endif
])
if test x"$ac_cv_have_decl_openpty" = xyes; then \
AC_SEARCH_LIBS([openpty],[util])
fi
axiom_use_sman=1
if test x"$ac_cv_have_decl_fork" = xyes \
-a x"$ac_cv_have_decl_wait" = xyes; then \
axiom_c_runtime="$axiom_c_runtime terminal_io"
axiom_src_all="$axiom_src_all all-sman all-clef"
axiom_src_subdirs="$axiom_src_subdirs clef sman"
AXIOM_MAKEFILE([src/clef/Makefile])
AXIOM_MAKEFILE([src/sman/Makefile])
else
axiom_use_sman=0
AC_MSG_NOTICE([Superman component is disabled.])
fi
AC_DEFINE_UNQUOTED([OPENAXIOM_USE_SMAN], [$axiom_use_sman],
[Whether to use the session manager as driver.])
axiom_src_all="all-input $axiom_src_all"
@
\subsection{Graphics}
\subsubsection{Where is X11?}
One of the thorniest issues with programs that use the X Window System
is portability. There exist many implementations of the X11
specification, each with its own variations, extensions, and what
not. Designing hand-written makefiles for such programs can be a
daunting task, fraut with all kinds of traps. Fortunately, \Tool{Autoconf}
provides us with some help, namely the macro [[AC_PATH_X]] and
[[AC_PATH_XTRA]]. The former searches the directories where the
X11 include files and the library files reside. The latter is an
enhanced version that
\begin{itemize}
\item computes the C compiler flags required by X11;
\item computes the linker flags required by X11;
\item checks for special libraries that some systems need in order to
compile X11 programs;
\item checks for special X11R6 libraries that need to be linked before
the flag [[-lX11]].
\end{itemize}
<<C headers and libraries>>=
AC_PATH_XTRA
## Output directives for the C compiler
AC_SUBST(X_CLFAGS)
## Output directives for the linker
AC_SUBST(X_LIBS)
## Output any extra libraries required by X11
AC_SUBST(X_EXTRA_LIBS)
## Finally, output the list of libraries that need to appear before -lX11
## Some part of OpenAxiom depends on Xpm. That library has kind uncertain
## future. At some point in the past, it was deprecated, to be
## replaced by xpm-nox; then came back again. So, its support may
## vary from system to system. For the moment, we assume that if X11
## is found then, Xpm is already present. Though, clearly that is a
## very optimistic assumption. Long term, OpenAxiom should get rid of
## dependence on Xpm. A nearly fool-proof test would be probably
## inspired by AC_PATH_XTRA. I don't have time to get to that
## complication right now. Will fix later.
X_PRE_LIBS="-lXpm $X_PRE_LIBS"
AC_SUBST(X_PRE_LIBS)
## If the system supports X11, then build graphics
axiom_use_x=no
if test -z $no_x; then
axiom_use_x=yes
axiom_c_runtime="$axiom_c_runtime graphics"
axiom_src_all="$axiom_src_all all-graph"
axiom_src_subdirs="$axiom_src_subdirs graph"
AXIOM_MAKEFILE([src/graph/Makefile])
AXIOM_MAKEFILE([src/graph/Gdraws/Makefile])
AXIOM_MAKEFILE([src/graph/view2D/Makefile])
AXIOM_MAKEFILE([src/graph/view3D/Makefile])
AXIOM_MAKEFILE([src/graph/viewAlone/Makefile])
AXIOM_MAKEFILE([src/graph/viewman/Makefile])
else
AC_MSG_NOTICE([The Garphics component is disabled.])
fi
AC_SUBST(axiom_src_all)
AC_SUBST(axiom_use_x)
@
\subsubsection{HyperDoc}
The HyperDoc component needs string pattern matching.
We require [[<regex.h>]], with POSIX-conformant definition. We used
to key build of HyperDoc component on the availability of X11
functionalities. That, however, is a severe restriction. Not all
of the HyperDoc components need X11. Some, such as [[htadd]], don't
need X11 at all. Therefore we have lifted part of the restrictions.
See \File{src/hyper/Makefile} for more details. Note that is we don't
build the HyperDoc component, the compilation of algebra files are
drawn in [[Unexpected HT command]] noise.
<<C headers and libraries>>=
openaxiom_host_has_regex=
AC_CHECK_HEADER([regex.h],
[openaxiom_host_has_regex=yes],
[openaxiom_host_has_regex=no])
AC_SUBST(openaxiom_host_has_regex)
@
\subsection{Lisp runtime}
\subsubsection{Runtime checking}
\Tool{OpenAxiom}'s Lisp runtime platform may instructed to perform
runtime checking. This may be useful when chasing Heinsenbugs.
It probably should be the default mode on development or experimental
branches.
<<runtime checking>>=
axiom_optimize_options=speed
## Shall we proclaim safety?
axiom_enable_checking=no # don't turn on checking by default.
AC_ARG_ENABLE([checking], [ --enable-checking turn runtime checking on],
[case $enableval in
yes|no) axiom_enable_checking=$enableval ;;
*) AC_MSG_ERROR([erroneous value for --enable-checking]) ;;
esac])
if test x"$axiom_enable_checking" = xyes; then
case $axiom_lisp_flavor in
gcl) # GCL-2.6.x does not understand debug.
axiom_optimize_options="$axiom_optimize_options safety"
;;
*) axiom_optimize_options="$axiom_optimize_options safety debug"
;;
esac
AC_MSG_NOTICE([runtime checking may increase compilation time])
fi
AC_SUBST(axiom_enable_checking)
AC_SUBST(axiom_optimize_options)
@
\Tool{GCL} relies on the libirary \Tool{BFD}, the include
headers of which may not exist (quite common). In order to avoid
\Tool{GCL} build failure, we test for the existence of [[<bfd.h>]]
and the corresponding library. We configure \Tool{GCL} to
use its own copy of \Tool{BFD} accordingly. FIXME: This must
be taken care of by \Tool{GCL} itself.
<<gcl options>>=
axiom_host_has_libbfd=
## Check for these only if we are going to build GCL from source.
case $axiom_all_prerequisites in
*all-gcl*)
AC_CHECK_HEADER([bfd.h])
AC_HAVE_LIBRARY([bfd], [axiom_host_has_libbfd=yes])
axiom_gcl_bfd_option=
if test x"$ac_cv_header_bfd_h" = xyes \
&& test x"$axiom_host_has_libbfd" = xyes; then
axiom_gcl_bfd_option="--disable-dynsysbfd"
else
axiom_gcl_bfd_option="--disable-statsysbfd --enable-locbfd"
fi
;;
*)
# Nothing to worry about
;;
esac
@
\Tool{GCL} has an elaborate memory management system and
\Tool{OpenAxiom} seems to
put ``unusual'' pressure on it. Here we specify some values that have
been empirically known to work.
<<gcl options>>=
# axiom_gcl_mm_option="--enable-maxpage=256*1024"
@
Furthermore, we don't need (at the moment) \Tool{GCL} to build support for
X Window system or TCL/TK:
<<gcl options>>=
axiom_gcl_x_option="--disable-tkconfig --disable-x --disable-xgcl"
@
Under some unusual circumstances, \Tool{GLC}'s \Tool{configure} will
fail to properly detect usable \Tool{Emacs} directories, and the
build will mysteriously fail later. We temporarily work
around that bug as follows:
<<gcl options>>=
axiom_gcl_emacs="--enable-emacs=correct"
@
Other aspects depend on the platform being considered.
\Tool{OpenAxiom} source code had developed the appalling and irritating habit
of testing for
platforms, when in fact it is interested in functionalities.
The outcome is an ever-growing pile of increasing disgusting hacks.
For example, most the XXXplatform below really have nothing to
do with platforms.
<<platform specific bits>>=
<<gcl options>>
PFL=
CCF="-O2 -Wall -D_GNU_SOURCE"
LDF=
LISP=lsp
case $target in
*bsd*|*dragonfly*)
AC_DEFINE([BSDplatform], [], [BSD flavour])
CCF="-O2 -Wall"
;;
windows)
AC_DEFINE([MSYSplatform], [], [MS])
SRCDIRS=bootdir interpdir sharedir algebradir etcdir docdir inputdir
;;
*linux*)
AC_DEFINE([LINUXplatform], [], [Linux flavour])
;;
*solaris*)
AC_DEFINE([SUNplatform], [], [SunOS flavour])
;;
powerpc*darwin*)
AC_DEFINE([MACOSXplatform], [], [MACOX flavour])
CCF="-O2 -Wall -D_GNU_SOURCE \
-I/usr/include -I/usr/include/sys"
axiom_gcl_bfd_option="--disable-statsysbfd \
--enable-machine=powerpc-macosx"
axiom_gcl_mm_option="--enable-vssize=65536*2"
;;
esac
GCLOPTS="$axiom_gcl_emacs $axiom_gcl_bfd_option $axiom_gcl_mm_option $axiom_gcl_x_option"
AC_SUBST(PLF)
AC_SUBST(CCF)
AC_SUBST(LDF)
AC_SUBST(LISP)
AC_SUBST(GCLOPTS)
@
The C preprocessor symbols [[BSDplatform]], [[LINUXplatform]], etc. are being
used as ``catch all'' for unstructured codes. They should be
removed from the source base. Any source file using those should be
properly documented as its needs are, and a narrowed, specific configure
test should be added.
\section{The build platform}
\subsection{Build utilities}
Most of the tools we're testing for are with respect to the build
environment. However, notice that since we only support \emph{native}
build at the moment, the tests are also for the host and target
platforms.
<<build utils>>=
## Accumulate list of utils needed for the build platform
## It is vital that noweb is present in the build environement.
axiom_all_prerequisites=
<<find make>>
<<find C compiler>>
<<file utils>>
<<awk and tar program>>
<<binary utils>>
<<doc utils>>
<<find lisp>>
<<lisp options>>
<<compiled lisp extension>>
AC_SUBST(axiom_all_prerequisites)
@
The next paragraphs detail each of the cluster of build utilities
[[configure]] looks for.
\paragraph{The \Tool{Make} program.}
Of course, no build can proceed with \File{Tool} inexisting from
the build-environment. We insist on GNU \Tool{Make} program as there
are way too many variations, way too many incompatible implementations
and extensions. Please, note that this requirement just reflects
\Tool{OpenAxiom}'s dependencies on external toos: \Tool{OpenAxiom} relies on
\Tool{GCL}, which in turn uses \Tool{GCC}. Building \Tool{GCC} requires
\Tool{GNU Make}, and \Tool{GCL} itself requires \Tool{GNU Make}.
<<find make>>=
case $build in
*linux*)
# GNU/Linux systems come equipped with GNU Make, called `make'
AC_CHECK_PROGS([MAKE], [make],
[AC_MSG_ERROR([Make utility missing.])])
;;
*)
# Other systems tend to spell it `gmake' and such
AC_CHECK_PROGS([MAKE], [gmake make],
[AC_MSG_ERROR([Make utility missing.])])
if ! $MAKE --version | grep 'GNU' 2>/dev/null; then
AC_MSG_ERROR([OpenAxiom build system needs GNU Make.])
fi
;;
esac
@
\paragraph{C compiler}
First of all, check for a C compiler. As written, this test is OK
because currently we support only native builds. However,
it needs to be more carefully written when we move to cross-compilation.
OpenAxiom, in its current form, cannot be compiled with a C compiler
other than from GNU. We take that as a requirement.
<<find C compiler>>=
## Make sure the C compiler is from GCC
AC_PROG_CC
if test x$GCC != xyes; then
AC_MSG_ERROR([We need a C compiler from GCC])
fi
axiom_cflags="-O2 -Wall -D_GNU_SOURCE"
AC_SUBST(axiom_cflags)
## What is the extension of object files on this platform?
AC_OBJEXT
AC_DEFINE_UNQUOTED([OPENAXIOM_EXEEXT], ["$ac_cv_exeext"],
[Extension of executable file.])
## Byte order of the host.
AC_C_BIGENDIAN
@
\paragraph{File utils}
Then, check for a usable [[install]] program. Also, find out
way to hard- or soft-link files.
After a recent migration to
\Tool{Autoconf-2.60}, it turns out that all possibilities of
soft-linking are tried (to ``play safe''), and if any variation
fails then, [[LN_S]] is defined to [[cp -p]], which works
only for files as sources. But, the only way we currently
use [[LN_S]] is when the first argument is a directory. So, the
``portability help'' we get from \Tool{Autoconf} is no help.
Consequently, the test for
[[ln -s]] is commented out for the moment.
<<file utils>>=
AC_PROG_INSTALL
# AC_PROG_LN_S
AC_CHECK_PROG([TOUCH], [touch],
[touch], [AC_MSG_ERROR(['touch' program is missing.])])
AC_CHECK_PROGS([MKTEMP], [mktemp])
@
\paragraph{The [[awk]] program}
The old build machinery needs \Tool{awk} on the build machine for
extracting algebra definitions. The same tool is needed on the
host machine for proper run of HyperDoc utilities. Note that at
the moment we do not make a distinction between the build machine
and the host machine (though that may change in the future).
<<awk and tar program>>=
AC_PROG_AWK
AC_PATH_PROGS([HOST_AWK],[awk nawk gawk mawk])
AC_CHECK_PROGS([PATCH], [gpatch patch],
[AC_MSG_ERROR([OpenAxiom needs a patch program])])
@
\paragraph{Binary utils.}
We need to know how to put object files into archives.
<<binary utils>>=
AC_CHECK_PROG([AR], [ar], [ar], [AC_MSG_ERROR([program 'ar' is missing])])
@
\paragraph{Doc utils.}
OpenAxiom sources is literate, and it uses the \Tool{noweb} technology.
\Tool{noweb} is used to extract both the actual source code from the
pamphlet files, and the documentation as \LaTeX{} source files.
There are many platforms on which \Tool{noweb} is not installed
by default. There is tarball of the dependencies on OpenAxiom's
web site to people to grab in case they don't have \Tool{noweb}
or \Tool{GCL}. What we do is that if noweb is not found, then
we try to build one from the tarball of dependency. For that
to work, the protocol is that the user has placed \Tool{noweb}'s source
files in a directory named \File{noweb/} at the top level. Normally,
this works right when one follows the installation instructions.
%
<<doc utils>>=
AC_PATH_PROG([LATEX], [latex])
AC_CHECK_PROGS([MAKEINDEX], [makeindex])
if test -n "$LATEX"; then \
:
else
AC_MSG_NOTICE([Documentation is disabled.])
fi
## ---------------------------------------
## Make sure noweb executable is available
## ---------------------------------------
AC_CHECK_PROGS([NOTANGLE], [notangle])
AC_CHECK_PROGS([NOWEAVE], [noweave])
## In case noweb is missing we need to build our own.
if test -z $NOTANGLE -o -z $NOWEAVE ; then
## Yes, but do we have the source files to build from?
if test ! -d ${srcdir}/noweb; then
AC_MSG_NOTICE([OpenAxiom requires noweb utilties])
AC_MSG_ERROR([Please get the tarball of dependencies and reconfigure])
fi
NOTANGLE='$(axiom_build_bindir)/notangle'
NOWEAVE='$(axiom_build_bindir)/noweave'
axiom_all_prerequisites="$axiom_all_prerequisites all-noweb"
fi
@
\paragraph{The Lisp platform.}
\Tool{OpenAxiom} uses Lisp as its main platform. If no Lisp implementation
is available in the build environment (or if \Tool{OpenAxiom} is told not
to look for one) then \Tool{OpenAxiom} must build its own version from the
copy of \Tool{GCL} sources it keeps in the \File{gcl/} directory.
<<find lisp>>=
## ------------------------
## -- Which Lisp to use? --
## ------------------------
##
## We will default to GCL later, if no lisp implementation is specified.
axiom_lisp=
axiom_lisp_flavor=unknown
# Most Lisp systems don't use conventional methods for building programs.
oa_standard_linking=no
AC_ARG_WITH([lisp], [ --with-lisp=L use L as Lisp platform],
[axiom_lisp=$withval])
@
The [[configure]] option \verb!--with-lisp=L! specifies which
Lisp implementation flavor to use for building OpenAxiom. For all values
of [[L]], except \Tool{GCL}, the assumption is that the Lisp
image [[L]] is available in the build environment. For \Tool{GCL},
we make an exception: if no GCL image is available, or if
the option \verb!--enable-gcl! is specified then \Tool{OpenAxiom}
builds its own version from the source tree.
<<find lisp>>=
## If --enable-gcl is specified, we need to check for coonsistency
axiom_include_gcl=
if test -z $axiom_lisp; then
AC_ARG_ENABLE([gcl], [ --enable-gcl build GCL from OpenAxiom source],
[case $enableval in
yes|no) axiom_include_gcl=$enableval ;;
*) AC_MSG_ERROR([erroneous value for --enable-gcl]) ;;
esac])
fi
@
Do we need to build our own version of \Tool{GCL}? The answer is yes, if
\begin{itemize}
\item the option \verb!--with-lisp! is not specified, and
no Lisp image is available in the build environment; or
\item we found a \Tool{GCL} image, but it is too old for OpenAxiom.
\end{itemize}
Consequently, we need to check for \Tool{GCL} and its version:
<<find lisp>>=
## We need to build our own GCL if none is avalaible, or the existing
## one is too old.
if test -z $axiom_lisp; then
AC_CHECK_PROGS([AXIOM_LISP], [gcl sbcl clisp])
## A lisp may not be available AND the GCL source may also
## be missing. Instruct user to either build one or get
## the dependencies from our website.
if test x$AXIOM_LISP = xgcl; then
AC_MSG_CHECKING([$AXIOM_LISP version])
v=`$AXIOM_LISP -batch -eval "(format t \"~S\" (lisp-implementation-version))"`
AC_MSG_RESULT([$v])
case $v in
*2.6.7*|*2.6.8*) ;; # OK
*)
AC_MSG_WARN([$v is not supported by this version of OpenAxiom. $AXIOM_LISP will be ignored.])
AXIOM_LISP=
;;
esac
fi
if test -z $AXIOM_LISP && test ! -d ${srcdir}/gcl; then
AC_MSG_ERROR([OpenAxiom requires a Lisp system. Either separately build one (GCL-2.6.7, GCL-2.6.8, SBCL, CLisp), or get the dependency tarball from OpenAxiom download website.])
fi
axiom_lisp=$AXIOM_LISP
else
## Honor use of Lisp image specified on command line
AXIOM_LISP=$axiom_lisp
AC_SUBST(AXIOM_LISP)
:
fi
@
We may be presented with incoherent options if
\begin{itemize}
\item \verb!--disable-gcl! is used without specifying a Lisp image, or
\item \verb!--with-lisp! is used but we are also told to build \Tool{GCL}.
\end{itemize}
<<find lisp>>=
## Coherence check for GCL inclusion.
case $axiom_include_gcl,$axiom_lisp in
,|no,|yes*)
## It doesn't make sense not to include GCL when no Lisp image
## is available. Give up.
if test $axiom_include_gcl,$AXIOM_LISP = no,; then
AC_MSG_ERROR([--disable-gcl specified but no GCL image found])
fi
## No Lisp image was specified and none was available from
## the build environment; build GCL from OpenAxiom source.
## User may explicilty specify --enable-gcl, but may be missing
## the dependency tarball.
if test ! -d ${srcdir}/gcl; then
AC_MSG_ERROR([The OpenAxiom dependency tarball is missing; please get it from our website.])
fi
AXIOM_LISP='$(axiom_build_bindir)/gcl'
axiom_all_prerequisites="$axiom_all_prerequisites all-gcl"
axiom_include_gcl=yes
axiom_lisp_flavor=gcl
axiom_fasl_type=o
;;
yes,*)
AC_MSG_ERROR([--with-lisp=$axiom_lisp conflicts with --enable-gcl])
;;
*)
## As of this writting, the Lisp systems ECL, GCL, SBCL, and CLisp all
## exist at the end of standard input.
AC_MSG_CHECKING([which flavor of Lisp])
what=`echo '(lisp-implementation-type)' | $axiom_lisp`
case $what in
*GCL*)
axiom_lisp_flavor=gcl
;;
*"ECL"*)
axiom_lisp_flavor=ecl
oa_standard_linking=yes
;;
*"SBCL"*)
axiom_lisp_flavor=sbcl
;;
*"CLISP"*)
## Not all variants of CLisp have FFI support. FFI is used
## internally used by OpenAxiom in essential way.
if ! $axiom_lisp -q -x '*features*' | grep ':FFI' > /dev/null
then
AC_MSG_ERROR([$axiom_lisp does not support Foreign Function Interface. Please upgrade to a better version of CLisp or install SBCL.])
fi
axiom_lisp_flavor=clisp
;;
*"Armed Bear Common Lisp"*)
axiom_lisp_flavor=abcl
;;
esac
AC_MSG_RESULT([$axiom_lisp_flavor])
esac
AC_SUBST(axiom_include_gcl)
AC_SUBST(axiom_lisp_flavor)
AC_SUBST(oa_standard_linking)
AC_DEFINE_UNQUOTED([OPENAXIOM_BASE_RTS],
[openaxiom_${axiom_lisp_flavor}_runtime],
[The kind of base runtime system for this build.])
## The following is a horrible hack to arrange for GCL to successfully
## rebuild symbol tables with "rsym" on Windows platform. It should
## go away as soon as GCL upstream is fixed.
case $axiom_lisp_flavor,$target in
gcl,*mingw*)
axiom_gcl_rsym_hack='d=`echo "(format nil \"~a\" si::*system-directory*)" | $(AXIOM_LISP) | grep "/gcl.*/" | sed -e "s,\",,g"`; cp $$d/rsym$(EXEEXT) .'
;;
*)
## Breath.
axiom_gcl_rsym_hack=':'
;;
esac
AC_SUBST(axiom_gcl_rsym_hack)
@
\paragraph{Lisp system options.} Lisp implementations greatly vary in
the command line options they support. Here we attempt to abstract
over those variations of Lisp systems we plan to support. In particular,
we need to know how to iinvoke a Lisp compiler with a set of
files to process in batch mode.
<<lisp options>>=
## Can we use dynamically linked libraries?
## Tentatively answer `yes' -- this is modern time.
oa_use_dynamic_lib=yes
## How are we supposed to tell the Lisp system to eval an expression
## in batch mode? What is the extension of a compiled Lisp file?
case $axiom_lisp_flavor in
gcl)
axiom_quiet_flags='-batch'
axiom_eval_flags='-eval'
oa_use_dynamic_lib=no
;;
ecl)
axiom_quiet_flags=
axiom_eval_flags='-norc -eval'
oa_use_dynamic_lib=no
;;
sbcl)
axiom_quiet_flags='--noinform --noprint'
axiom_eval_flags='--eval'
;;
clisp)
axiom_quiet_flags='--quiet'
axiom_eval_flags='-norc -x'
;;
*) AC_MSG_ERROR([We do not know how to build OpenAxiom this $axiom_lisp]) ;;
esac
AC_SUBST(axiom_quiet_flags)
AC_SUBST(axiom_eval_flags)
AC_SUBST(oa_use_dynamic_lib)
@
\paragraph{Compiled Lisp file extensions.}
The file extension for compiled Lisp files is implementation defined.
There does not seem to have an established existing practice as would
be found in the majority of Unix world. Consequently we need to
determine that by looking at the Lisp type of the pathname that
Lisp's [[compile-file]] would produce.
<<compiled lisp extension>>=
if test -z $axiom_fasl_type; then
AC_MSG_CHECKING([compiled Lisp file extension])
## We set the IFS to <space> as we don't want automatic
## replacement of <newline> by <space>.
axiom_save_IFS=$IFS
IFS=' '
axiom_fasl_type=`$axiom_lisp $axiom_quiet_flags $axiom_eval_flags '(progn (format t "axiom_fasl_type=~a" (pathname-type (compile-file-pathname "foo.lisp"))) (quit))'`
## Now pull out the fasl type. ECL has the habit of spitting noise
## about internal loading. Therefore, we must look only for a line that
## begins with axiom_fasl_type.
axiom_fasl_type=`echo $axiom_fasl_type | grep '^axiom_fasl_type'`
IFS=$axiom_save_IFS
axiom_fasl_type=`echo $axiom_fasl_type | sed -e 's/axiom_fasl_type=//'`
if test -z $axiom_fasl_type; then
AC_MSG_ERROR([Could not determine extension for compiled Lisp files])
fi
AC_MSG_RESULT([$axiom_fasl_type])
fi
AC_SUBST(axiom_fasl_type)
@
\paragraph{Native data types}
OpenAxiom needs to communicate to the hosting operation systems
through a set of C interface. Consequently we need an automated
translation mechanism that shields Boot code from the variability
of Lisp systems for so-called `foreign function interface'. Here,
we compute a translation table for supported Lisp systems. This table
is used by the Boot translator for generating codes for import of
native routines.
<<nativeTypeTable>>=
case $axiom_lisp_flavor in
gcl)
void_type='void'
char_type='char'
int_type='int'
float_type='float'
double_type='double'
string_type='string'
;;
sbcl)
void_type='void'
char_type='char'
int_type='int'
float_type='float'
double_type='double'
string_type='c-string'
;;
clisp)
void_type='nil'
char_type='character'
int_type='int'
float_type='single-float'
double_type='double-float'
string_type='c-string'
;;
ecl)
void_type=':void'
char_type=':char'
int_type=':int'
float_type=':float'
double_type=':double'
string_type=':cstring'
;;
*)
AC_MSG_ERROR([We do not know how to translate native types for this Lisp])
;;
esac
AC_SUBST(void_type)
AC_SUBST(char_type)
AC_SUBST(int_type)
AC_SUBST(float_type)
AC_SUBST(double_type)
AC_SUBST(string_type)
@
\section{Configuration options}
\label{sec:config-options}
We strive for making \Tool{OpenAxiom}'s build system integrate as seamlessly as
possibly into the standard GNU build framework.
\subsection{Standard options}
\label{sec:config-options:std}
At the moment, we honor the following options:
\begin{description}
\item \verb!--prefix!:
By default, \Tool{OpenAxiom}'s build system will install files
in ``\File{/usr/local}''. However, you
can select a different location prefix using this option.
\item \verb!--with-x!:
\item \verb!--x-includes=DIR!
\item \verb!--x-libraries=DIR!
\item \verb!--help!
\item \verb!--version!
\end{description}
\subsection{\Tool{OpenAxiom}-specific options}
\label{sec:config-options:axiom-specific}
\begin{description}
\item \verb!--enable-gcl!:
\Tool{OpenAxiom} needs an implementation of Lisp to support its
runtime system. At the moment, GNU Common Lisp (\Tool{GCL} for short)
is used. This options instructs \Tool{OpenAxiom} to build its own copy
of \Tool{GCL}. Use \verb!--disable-gcl! to prevent OpenAxiom
from building \Tool{GCL}.
\item \verb!--with-lisp=L!:
instructs \Tool{OpenAxiom} to use the Lisp image [[L]] for its
runtime platform.
\item \verb!--enable-checking!:
instructs \Tool{OpenAxiom}'s Lisp image to perform runtime checking
for generated Lisp codes.
\end{description}
\section{Basic Setup}
\label{sec:basic-setup}
\subsection{\Tool{Autoconf} Initialization}
\label{sec:basic-setup:init}
The \Tool{Autoconf} machinery needs to be initialized with several pieces of
information:
\begin{itemize}
\item the \emph{name} of the system --- ``OpenAxiom 1.2.0''
\item its \emph{version}. I choose to use the date of last checkin.
It should probably include the revision number so as to
unambiguously identify which \Tool{OpenAxiom} flavour du jour is being
built;
\item and where to send feedback, \emph{e.g.} bug reports. At the moment,
we use
the \email{open-axiom-devel} list. That could change in the future if
we reach a high volume traffic. For the moment, we don't seem to
suffer from traffic...
\end{itemize}
<<Autoconf init>>=
sinclude(config/open-axiom.m4)
sinclude(config/aclocal.m4)
AC_INIT([OpenAxiom], [1.3.0-2009-05-29],
[open-axiom-bugs@lists.sf.net])
@
\Tool{Autoconf} needs some auxilary files that are present in the
sub-directory \File{config}:
<<Autoconf init>>=
AC_CONFIG_AUX_DIR(config)
AC_CONFIG_MACRO_DIR(config)
@
Not all platforms present the same operating system API to applications.
For the part of \Tool{OpenAxiom} written in the C programming language, we
can collect, in a single file, variabilities in operating system
API in form of C preprocessor macros. That file is for the most part
automatically generated by \Tool{Autoheader}.
<<Autoconf init>>=
AC_CONFIG_HEADERS([config/openaxiom-c-macros.h])
@
Note that at configuration time, \Tool{configure} will instantiate a
file \File{config/openaxiom-c-macros.h} in the directory [[$(top_builddir)]],
appropriate for all C sub-parts of \Tool{OpenAxiom} to include.
Notice that since we don't use Automake (yet), we don't initialize
the Automake subsystem.
<<Autoconf init>>=
# AM_INIT_AUTOMAKE([foreign])
@
We require Autoconf $2.60$ or higher from the developer part. Please,
note that this is no requirement on the user build environment. All,
it means is that if someone makes changes to the current \File{configure.ac}
file, that someone needs to have Autoconf $2.60$ or higher to process this
file in order to regenerate \File{configure}.
<<Autoconf init>>=
AC_PREREQ([2.60])
@
\subsection{Source tree sanity check}
\label{sec:basic-setup:sanity-check}
The \Tool{Autoconf} system implements a very basic, simple-minded,
sanity check
whereby it will refuse to run \File{configure} if the source tree does
not contain a specified file, that serves a witness for a bona fide source
tree. Here, we use \File{Makefile.pamphlet} from the \File{src}
subdirectory.
<<sanity check>>=
AC_CONFIG_SRCDIR(src/Makefile.pamphlet)
@
\subsubsection{Instantiating configuration files}
<<instantiate config files>>=
AXIOM_MAKEFILE([Makefile])
AXIOM_MAKEFILE([src/Makefile])
AXIOM_MAKEFILE([src/lib/Makefile])
AXIOM_MAKEFILE([src/hyper/Makefile])
AXIOM_MAKEFILE([src/driver/Makefile])
AXIOM_MAKEFILE([src/lisp/Makefile])
AXIOM_MAKEFILE([src/boot/Makefile])
AXIOM_MAKEFILE([src/interp/Makefile])
AXIOM_MAKEFILE([src/share/Makefile])
AXIOM_MAKEFILE([src/algebra/Makefile])
AXIOM_MAKEFILE([src/input/Makefile])
AXIOM_MAKEFILE([src/etc/Makefile])
AXIOM_MAKEFILE([src/doc/Makefile])
AC_CONFIG_FILES([src/hyper/presea], [chmod +x src/hyper/presea])
## We now generate the "document" script and support files at configure time.
## We put them in the build directory because they are intended to be
## build support utils only.
AC_CONFIG_FILES(build/scripts/document:$srcdir/src/scripts/document.in, \
[chmod +x build/scripts/document])
AC_OUTPUT
## Generate rules to extrad SPAD type definitions from pamphlets.
echo -n "extracting list of SPAD type definitions..."
egrep '@<<(category|domain|package) .*>>=' \
$srcdir/src/algebra/*.spad.pamphlet \
| sort | uniq | \
while IFS=':' read spad_file chunk_desc; do
chunk_desc=`echo $chunk_desc | sed -e 's,@<<,,' -e 's,>>=,,'`
set $chunk_desc; spad_abbrev=$2
cat >> src/algebra/tmp-extract-spad.mk <<EOF
$spad_abbrev.spad: \$(srcdir)/`basename $spad_file` ; \
@\$(axiom_build_document) --output=\$@.tmp --tangle="$chunk_desc" \$< && \
\$(top_confdir)/move-if-change \$@.tmp \$@
EOF
done
echo done
$srcdir/config/move-if-change \
src/algebra/tmp-extract-spad.mk src/algebra/extract-spad.mk
@
\section{Dynamic and shared libraries}
We need to link some C object files into in the Lisp images we
use. Some Lisps (e.g. GCL, ECL) support inclusion of ``ordinary''
object files. Other Lisps (e.g. SBCL) support only dynamic
or shared libraries. However, the exact minutia of portably
building shared libraries are known to be fraught with all kinds
of traps. Consequently, dedicated tools have been developed to
abstract away from those details. In particular, we rely on
GNU \Tool{libtool} to take care of that for us.
<<initialize shared libraries tool>>=
oa_use_libtool_for_shared_lib=yes
oa_shrobj_flags=
oa_shrlib_flags=
# Tell Libtool to assume `dlopen' so that it does not have to
# emulate it.
LT_INIT([pic-only dlopen win32-dll shared])
AC_SUBST([LIBTOOL_DEPS])
# Give me extension of libraries
eval shared_ext=\"$shrext_cmds\"
AC_SUBST(shared_ext)
AC_SUBST(libext)
## Don't use Libtool for building actual DLLs on MinGW and Cygwin
## Libool has been improved to the point of being useless
## for building in-place shared libraries.
oa_use_libtool_for_shared_lib=no
case $host in
*mingw*|*cygwin*)
# oa_use_libtool_for_shared_lib=no
oa_shrobj_flags='-prefer-pic'
oa_shrlib_flags="-shared --export-all-symbols"
;;
*darwin*)
oa_shrobj_flags='-dynamic'
oa_shrlib_flags='-dynamiclib -undefined suppress -flat_namespace'
;;
*)
oa_shrobj_flags='-prefer-pic'
oa_shrlib_flags='-shared'
;;
esac
AC_SUBST(oa_use_libtool_for_shared_lib)
AC_SUBST(oa_shrobj_flags)
AC_SUBST(oa_shrlib_flags)
@
\section{configure.ac}
<<*>>=
<<Autoconf init>>
<<sanity check>>
<<initialize shared libraries tool>>
axiom_src_subdirs="lib hyper lisp boot interp share algebra input etc doc"
AC_SUBST(axiom_src_subdirs)
<<host build target platfoms>>
## On Windows system, we prefer the default installation
## location to be 'C:/Program Files/OpenAxiom', following Windows
## convention. We cannot use AC_PREFIX_DEFAULT directly as it seems
## to operate unconditionally. Therefore, we resort to this dirty
## trick stepping over Autoconf's internals.
case $host in
*mingw*)
ac_default_prefix="C:/Program Files/OpenAxiom"
AC_PATH_PROGS([oa_editor],[notepad.exe])
;;
*)
AC_PATH_PROGS([oa_editor],[vi])
;;
esac
AC_SUBST(oa_editor)
<<build utils>>
<<runtime checking>>
# FIXME: Move this out of here.
axiom_c_runtime=
AC_SUBST(axiom_c_runtime)
<<C headers and libraries>>
<<platform specific bits>>
<<nativeTypeTable>>
<<instantiate config files>>
echo "Type '${MAKE}' (without quotes) to build OpenAxiom"
@
\section{A note about comments}
\label{sec:comment}
This is a pamphlet file. That means the source code embedded here
are first extracted into a form (\File{configure.ac}) digestible by
\Tool{Autoconf}, which in turn produces the end-user \File{configure}
script run for setting up the build.
\Tool{Autoconf} supports two kinds of comments:
\begin{enumerate}
\item [[dnl]] style, and
\item [[#]] style.
\end{enumerate}
Comments introduced with [[dnl]] are copied verbatim to the generated
\File{configure.ac}; however, do not appear in the \File{configure}
output file. They are for \Tool{Autoconf} consumption only --- and that
of the humans reading \File{configure.ac} (ideally, there should be none).
Comments starting with [[#]] appear verbatim in both \File{configure.ac}
and \File{configure} files. Because this is a pamphlet file, there almost
never is a need to use the [[dnl]]-style comment.
Consequently, \Tool{Autoconf} comments in this file should be
of [[#]]-style form. Such comments can be of value to the occasional
poor masochist who will be debugging the generated \File{configure}.
\end{document}
|