diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/algebra/indexedp.spad.pamphlet | 38 |
1 files changed, 18 insertions, 20 deletions
diff --git a/src/algebra/indexedp.spad.pamphlet b/src/algebra/indexedp.spad.pamphlet index 6e131135..a9f36a64 100644 --- a/src/algebra/indexedp.spad.pamphlet +++ b/src/algebra/indexedp.spad.pamphlet @@ -280,32 +280,30 @@ IndexedDirectProductOrderedAbelianMonoid(A:OrderedAbelianMonoid,S:OrderedType): IndexedDirectProductOrderedAbelianMonoidSup(A:OrderedAbelianMonoidSup,S:OrderedSet): Join(OrderedAbelianMonoidSup,IndexedDirectProductCategory(A,S)) == IndexedDirectProductOrderedAbelianMonoid(A,S) add - --representations - Term == Record(k:S,c:A) - Rep:= List Term - subtractIfCan(x,y) == - empty? y => just x - empty? x => nothing - x.first.k < y.first.k => nothing - x.first.k > y.first.k => - t:= subtractIfCan(x.rest, y) + zero? y => just x + zero? x => nothing + leadingSupport x < leadingSupport y => nothing + leadingSupport x > leadingSupport y => + t := subtractIfCan(reductum x, y) t case nothing => nothing - just cons( x.first, t) - u := subtractIfCan(x.first.c, y.first.c) + just convert cons(leadingTerm x, terms t) + u := subtractIfCan(leadingCoefficient x, leadingCoefficient y) u case nothing => nothing - zero? u => subtractIfCan(x.rest, y.rest) - t := subtractIfCan(x.rest, y.rest) + t := subtractIfCan(reductum x, reductum y) + zero? u => t t case nothing => nothing - just cons([x.first.k,u],t) + just convert cons(term(leadingSupport x,u),terms t) sup(x,y) == - empty? y => x - empty? x => y - x.first.k < y.first.k => cons(y.first,sup(x,y.rest)) - x.first.k > y.first.k => cons(x.first,sup(x.rest,y)) - u:=sup(x.first.c, y.first.c) - cons([x.first.k,u],sup(x.rest,y.rest)) + zero? y => x + zero? x => y + leadingSupport x < leadingSupport y => + convert cons(leadingTerm y,terms sup(x,reductum y)) + leadingSupport x > leadingSupport y => + convert cons(leadingTerm x,terms sup(reductum x,y)) + u := sup(leadingCoefficient x, leadingCoefficient y) + convert cons(term(leadingSupport x,u),terms sup(reductum x,reductum y)) @ \section{domain IDPAG IndexedDirectProductAbelianGroup} |